ARM: Appearance Reconstruction Model for Relightable 3D Generation

Supplementary Material

9. Detailed explanation of Eq. 1

ARM models the appearance of object by a spatially vary-
ing BRDF described in Eq. 1. For the microfacet nor-
mal distribution term D, we use isotropic GGX distribu-
tion [69]:
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where n is the half-way vector. The Geometry function G
is based on the Schlick-GGX Geometry function:

G(na 17 v, k) = Gsub(n7 17 k)GSub(na v, k)a

where
n-v

(n-v)(1—Fk)+k

Gsub(na v, k) =

Here, k = (p* + 1)?/8. Last, the Fresnel term F' is
F(v,h) =Fy+ (1= F)(1— (h-v))®,

where
Fy =mecqg+ (1 —m)0.04.

10. Details on GeoRM and GlossyRM

GeoRM and GlossyRM are built on the LRM frame-
work, with a super-resolution upsampler added
to the triplane synthesizer, as shown in Fig. 8.
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ResNet [28], using four Residual-in-Residual Dense Blocks
with a filter size of 512. After these blocks, the upsampling
steps consist of three convolutional layers, raising the tri-
plane resolution to 256. Details of the remaining model
components, including the encoder and transformer, are
provided in Tab. 4.

While GeoRM and GlossyRM share the same architec-
ture, they are trained as two distinct models. For GeoRM,

Triplane Synthesizer

Figure 8. Architecture of tri-
plane synthesizer.

Input Views 6
Encoder Dim. 768
Transformer Dim. 1024
Transformer Layers 16
Transformer Heads 16

Triplane Resolution (Coarse) 32

Triplane Resolution (Fine) 256
MLP Hidden Layers 4
MLP Hidden Dim. 32

Table 4. Specifications of GeoRM and GlossyRM. Parameters
for each component of the large reconstruction models used in our
approach are listed.
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Figure 9. Comparison with unified material prediction. ARM
separates the prediction of roughness and metalness by using
GlossyRM, rather than predicting all material parameters within
InstantAlbedo. We compare the differences between two ap-
proaches. InstantAlbedo tends to predict only intermediate values
for roughness and metalness, making it difficult to produce ex-
treme values close to 0 or 1, particularly for non-metallic objects.



Method | PSNR-D 1 SSIM-D1 LPIPS-D | | PSNR-p1 SSIM-p1 LPIPS-p| | PSNR-m 1 SSIM-m {1 LPIPS-m |
SF3D [4] 16.937 0.834 0.205 18.012 0.873 0.202 20.433 0.862 0.153
Ours 21.108 0.844 0.178 19.565 0.883 0.165 21.866 0.883 0.145

Table 5. Quantitative results of reconstructed PBR maps. We report metrics comparing the predicted PBR maps with ground truth.
Due to the high ambiguity in appearance decomposition, where multiple valid decompositions can explain the same shaded image, we
only provide indicative scores in the supplementary material. Here, -D represents diffuse albedo, -p denotes roughness, and -m denotes

metalness.

we adopt a two-stage training strategy similar to [81]. In the
first stage, we load pretrained weights for all components
except the newly introduced super-resolution module and
train using a volume rendering loss. In the second stage, we
employ differentiable marching cubes to extract iso-surface
from the queried density grid, followed by rendering with a
differentiable rasterizer [27].

After training GeoRM, we proceed to train GlossyRM
while keeping GeoRM fixed. Specifically, we first use
GeoRM to generate the 3D shape from the multi-view in-
put. Then, for each vertex on this generated shape, we
retrieve features from GlossyRM’s triplane and feed them
into the decoding MLP to predict roughness and metalness.
These per-vertex properties are then used to render multi-
view images, with a loss computed against ground-truth im-
ages to guide GlossyRM’s training. For faster convergence,
GlossyRM is initialized with GeoRM’s weights at the start
of training.

11. Unified material prediction

ARM separates PBR parameter prediction into two net-
works: InstantAlbedo for diffuse albedo and GlossyRM for
roughness and metalness. Although predicting all material
properties within InstantAlbedo might seem more straight-
forward, our experiments indicate that this approach re-
sults in inaccurate material decomposition, as shown in
Fig. 9. InstantAlbedo tends to predict only intermediate
values for roughness and metalness, making it difficult to
produce extreme values close to 0 or 1, particularly for non-
metallic objects. Notably, for SVBRDF, human perception
is generally more sensitive to spatial variations (subtle pixel
changes within textures) than to angular variations (sub-
tle changes of lighting and view direction in BRDF). By
leveraging GlossyRM, which has ample network capacity,
our method effectively produces realistic appearances, with
InstantAlbedo capturing the fine-grained details in diffuse
albedo.

12. Failure cases of material prior & FFC-Net

Additional examples of our material prior and FFC-Net are
shown in Fig. 10. In the top part, the material prior strug-
gles with highly ambiguous input images. For example, the
metallic ring on the bottle’s neck is incorrectly assigned the
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Figure 10. More examples on albedo decomposition and tex-
ture inpainting. The material prior fails to accurately decompose
the diffuse albedo for the bottle and plane objects (top), while
FFC-Net’s inpainting results do not align well with the ground
truth for the rightmost three objects (bottom). Unseen inpainted
areas are highlighted in red.
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same color as the body. Similarly, the plane object is mis-
classified as a white metallic object instead of a black dif-
fuse one. In the bottom part, the FFC-Net fails to inpaint
patterns or colors missing from the input image, such as the
specific pattern on the shoe’s bottom or the light blue at the
bottom of the material sphere when only dark blue is present
in the input.

13. Details on InstantAlbedo

The InstantAlbedo framework comprises three main net-
works: a material-aware image encoder, a U-Net, and
an FFC-Net. The material-aware image encoder is based
on [58], excluding the user reference injection and cross-
attention layers. The intermediate features of different reso-
lutions output by DINO, are fused using convolutional neu-
ral networks to generate a feature map matching the input
image resolution. The total parameter number of InstantA-
Ibedo is about 300M. For the FFC-Net, we use a ResNet-
like architecture [19] with 3 downsampling blocks, 4 resid-
ual blocks, and 3 upsampling blocks. In our model, the
residual blocks utilize FFC with a filter size of 512.
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Figure 11. Qualitative comparison. We present examples of single-image 3D generation across different methods. While other methods
exhibit blurriness, ARM reconstructs complex patterns with sharp details. Please zoom in to examine the texture quality.

14. Dataset selection GlossyRM.

] 2. The object must not be a point cloud, nor a sparse or
GeoRM and GlossyRM are trained on a 150K subset of small object with low occupancy (fewer than 10 pixels
the Objaverse dataset [12]. This subset is carefully curated per rendered view).
pased on the following criteria to ensure high-quality train- 3. Low-quality objects, such as scanned indoor data or
ing data: large scenes with multiple objects, are excluded.

1. Each selected object must include a roughness map
or a metalness map. This requirement ensures that
the objects have sufficient material data for training
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Figure 12. PBR comparison. We compare reconstructed PBR maps and relit images under novel lighting to SF3D [4]. While SF3D
produces constant roughness and material with lighting baked into the diffuse color (highlighted in the figure), our method generates
spatially-varying appearance, with well-separated illumination and materials.

15. Shape alignment

During evaluation, we align each method’s predicted
meshes to the ground truth meshes before calculating met-
rics, as coordinate frames may differ across methods. Fol-
lowing MeshFormer [35], we use a two-step alignment
based on the evaluation metric. First, we normalize both
ground truth and predicted meshes to fit within a bounding
box in the range [—1, 1]3. Then, we uniformly sample rota-
tions in [0, 27) and scales in [0.7, 1.4] for initialization, re-
fining the alignment using the Iterative Closest Point (ICP)
algorithm. We select the alignment with the highest evalua-
tion score.

Once aligned, we compute metrics for each method. For
3D metrics, we sample 100,000 points on both the ground
truth and predicted meshes to calculate the F-score and
Chamfer Distance, setting a threshold of 0.1 for the F-score.
To evaluate texture quality, we compute PSNR, SSIM, and
LPIPS between images rendered from the reconstructed
mesh and ground truth. We sample 32 camera poses in a full
360-degree view around the object, rendering RGB images
at a resolution of 320x320. Since we use the VGG model
for LPIPS loss during training, we use the Alex model for
LPIPS evaluation.



16. Additional results

In Tab. 5, We report quantitative metrics comparing the pre-
dicted PBR maps with ground truth, using SF3D and our
method. Due to the high ambiguity in appearance decom-
position, where multiple valid decompositions can explain
the same shaded image, we only provide indicative scores
in the supplementary material.

Fig. 11 presents complete qualitative examples, includ-
ing comparisons with LGM and CRM. In Fig. 12, we pro-
vide further examples along with additional relighting re-
sults.



