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9. Detailed explanation of Eq. 1
ARM models the appearance of object by a spatially vary-

ing BRDF described in Eq. 1. For the microfacet nor-

mal distribution term D, we use isotropic GGX distribu-

tion [69]:

D(n,h, α) =
α2

π((n · h)(α2 − 1) + 1)2
, α = ρ2,

where n is the half-way vector. The Geometry function G
is based on the Schlick-GGX Geometry function:

G(n, l,v, k) = Gsub(n, l, k)Gsub(n,v, k),

where

Gsub(n,v, k) =
n · v

(n · v)(1− k) + k
.

Here, k = (ρ2 + 1)2/8. Last, the Fresnel term F is

F (v,h) = F0 + (1− F0)(1− (h · v))5,
where

F0 = mcd + (1−m)0.04.

10. Details on GeoRM and GlossyRM
GeoRM and GlossyRM are built on the LRM frame-

work, with a super-resolution upsampler added

to the triplane synthesizer, as shown in Fig. 8.
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Figure 8. Architecture of tri-
plane synthesizer.

A pretrained ViT image

encoder [6] converts multi-

view input images into im-

age tokens. To make the

network aware of camera

pose, we add AdaLN cam-

era pose modulation lay-

ers to the ViT encoder, fol-

lowing Instant3D [29], en-

abling pose-aware output

tokens. The image encoder

is jointly fine-tuned during

training. The super-resolution upsampler is based on SR-

ResNet [28], using four Residual-in-Residual Dense Blocks

with a filter size of 512. After these blocks, the upsampling

steps consist of three convolutional layers, raising the tri-

plane resolution to 256. Details of the remaining model

components, including the encoder and transformer, are

provided in Tab. 4.

While GeoRM and GlossyRM share the same architec-

ture, they are trained as two distinct models. For GeoRM,

Input Views 6

Encoder Dim. 768

Transformer Dim. 1024

Transformer Layers 16

Transformer Heads 16

Triplane Resolution (Coarse) 32

Triplane Resolution (Fine) 256

MLP Hidden Layers 4

MLP Hidden Dim. 32

Table 4. Specifications of GeoRM and GlossyRM. Parameters

for each component of the large reconstruction models used in our

approach are listed.
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Figure 9. Comparison with unified material prediction. ARM

separates the prediction of roughness and metalness by using

GlossyRM, rather than predicting all material parameters within

InstantAlbedo. We compare the differences between two ap-

proaches. InstantAlbedo tends to predict only intermediate values

for roughness and metalness, making it difficult to produce ex-

treme values close to 0 or 1, particularly for non-metallic objects.



Method PSNR-D ↑ SSIM-D ↑ LPIPS-D ↓ PSNR-ρ ↑ SSIM-ρ ↑ LPIPS-ρ ↓ PSNR-m ↑ SSIM-m ↑ LPIPS-m ↓
SF3D [4] 16.937 0.834 0.205 18.012 0.873 0.202 20.433 0.862 0.153

Ours 21.108 0.844 0.178 19.565 0.883 0.165 21.866 0.883 0.145

Table 5. Quantitative results of reconstructed PBR maps. We report metrics comparing the predicted PBR maps with ground truth.

Due to the high ambiguity in appearance decomposition, where multiple valid decompositions can explain the same shaded image, we

only provide indicative scores in the supplementary material. Here, -D represents diffuse albedo, -ρ denotes roughness, and -m denotes

metalness.

we adopt a two-stage training strategy similar to [81]. In the

first stage, we load pretrained weights for all components

except the newly introduced super-resolution module and

train using a volume rendering loss. In the second stage, we

employ differentiable marching cubes to extract iso-surface

from the queried density grid, followed by rendering with a

differentiable rasterizer [27].

After training GeoRM, we proceed to train GlossyRM

while keeping GeoRM fixed. Specifically, we first use

GeoRM to generate the 3D shape from the multi-view in-

put. Then, for each vertex on this generated shape, we

retrieve features from GlossyRM’s triplane and feed them

into the decoding MLP to predict roughness and metalness.

These per-vertex properties are then used to render multi-

view images, with a loss computed against ground-truth im-

ages to guide GlossyRM’s training. For faster convergence,

GlossyRM is initialized with GeoRM’s weights at the start

of training.

11. Unified material prediction

ARM separates PBR parameter prediction into two net-

works: InstantAlbedo for diffuse albedo and GlossyRM for

roughness and metalness. Although predicting all material

properties within InstantAlbedo might seem more straight-

forward, our experiments indicate that this approach re-

sults in inaccurate material decomposition, as shown in

Fig. 9. InstantAlbedo tends to predict only intermediate

values for roughness and metalness, making it difficult to

produce extreme values close to 0 or 1, particularly for non-

metallic objects. Notably, for SVBRDF, human perception

is generally more sensitive to spatial variations (subtle pixel

changes within textures) than to angular variations (sub-

tle changes of lighting and view direction in BRDF). By

leveraging GlossyRM, which has ample network capacity,

our method effectively produces realistic appearances, with

InstantAlbedo capturing the fine-grained details in diffuse

albedo.

12. Failure cases of material prior & FFC-Net

Additional examples of our material prior and FFC-Net are

shown in Fig. 10. In the top part, the material prior strug-

gles with highly ambiguous input images. For example, the

metallic ring on the bottle’s neck is incorrectly assigned the
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Figure 10. More examples on albedo decomposition and tex-
ture inpainting. The material prior fails to accurately decompose

the diffuse albedo for the bottle and plane objects (top), while

FFC-Net’s inpainting results do not align well with the ground

truth for the rightmost three objects (bottom). Unseen inpainted

areas are highlighted in red.

same color as the body. Similarly, the plane object is mis-

classified as a white metallic object instead of a black dif-

fuse one. In the bottom part, the FFC-Net fails to inpaint

patterns or colors missing from the input image, such as the

specific pattern on the shoe’s bottom or the light blue at the

bottom of the material sphere when only dark blue is present

in the input.

13. Details on InstantAlbedo
The InstantAlbedo framework comprises three main net-

works: a material-aware image encoder, a U-Net, and

an FFC-Net. The material-aware image encoder is based

on [58], excluding the user reference injection and cross-

attention layers. The intermediate features of different reso-

lutions output by DINO, are fused using convolutional neu-

ral networks to generate a feature map matching the input

image resolution. The total parameter number of InstantA-

lbedo is about 300M. For the FFC-Net, we use a ResNet-

like architecture [19] with 3 downsampling blocks, 4 resid-

ual blocks, and 3 upsampling blocks. In our model, the

residual blocks utilize FFC with a filter size of 512.



Figure 11. Qualitative comparison. We present examples of single-image 3D generation across different methods. While other methods

exhibit blurriness, ARM reconstructs complex patterns with sharp details. Please zoom in to examine the texture quality.

14. Dataset selection

GeoRM and GlossyRM are trained on a 150K subset of

the Objaverse dataset [12]. This subset is carefully curated

based on the following criteria to ensure high-quality train-

ing data:

1. Each selected object must include a roughness map

or a metalness map. This requirement ensures that

the objects have sufficient material data for training

GlossyRM.

2. The object must not be a point cloud, nor a sparse or

small object with low occupancy (fewer than 10 pixels

per rendered view).

3. Low-quality objects, such as scanned indoor data or

large scenes with multiple objects, are excluded.
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Figure 12. PBR comparison. We compare reconstructed PBR maps and relit images under novel lighting to SF3D [4]. While SF3D

produces constant roughness and material with lighting baked into the diffuse color (highlighted in the figure), our method generates

spatially-varying appearance, with well-separated illumination and materials.

15. Shape alignment

During evaluation, we align each method’s predicted

meshes to the ground truth meshes before calculating met-

rics, as coordinate frames may differ across methods. Fol-

lowing MeshFormer [35], we use a two-step alignment

based on the evaluation metric. First, we normalize both

ground truth and predicted meshes to fit within a bounding

box in the range [−1, 1]3. Then, we uniformly sample rota-

tions in [0, 2π) and scales in [0.7, 1.4] for initialization, re-

fining the alignment using the Iterative Closest Point (ICP)

algorithm. We select the alignment with the highest evalua-

tion score.

Once aligned, we compute metrics for each method. For

3D metrics, we sample 100,000 points on both the ground

truth and predicted meshes to calculate the F-score and

Chamfer Distance, setting a threshold of 0.1 for the F-score.

To evaluate texture quality, we compute PSNR, SSIM, and

LPIPS between images rendered from the reconstructed

mesh and ground truth. We sample 32 camera poses in a full

360-degree view around the object, rendering RGB images

at a resolution of 320×320. Since we use the VGG model

for LPIPS loss during training, we use the Alex model for

LPIPS evaluation.



16. Additional results
In Tab. 5, We report quantitative metrics comparing the pre-

dicted PBR maps with ground truth, using SF3D and our

method. Due to the high ambiguity in appearance decom-

position, where multiple valid decompositions can explain

the same shaded image, we only provide indicative scores

in the supplementary material.

Fig. 11 presents complete qualitative examples, includ-

ing comparisons with LGM and CRM. In Fig. 12, we pro-

vide further examples along with additional relighting re-

sults.


