
CASAGPT: Cuboid Arrangement and Scene Assembly for Interior Design

Supplementary Material

In this supplementary material, we include the following
details: implementation specifics in Appendix A, dataset-
related statistics in Appendix B, computation cost in Ap-
pendix C, cuboid generation procedure evaluation in Ap-
pendix D, some failure cases of CASAGPT in Appendix E
and further visual results Appendix F.

A. Implementations
A.1. Model architecture

The model architecture is based on LLaMA-3 with modi-
fications to the model size and position encoding. Specifi-
cally, the model consists of 8 layers, with a hidden dimen-
sion of 512 and a parameter size of 27.4 million. It uses the
SwiGLU activation function and a learned position encod-
ing. Additionally, both the number of attention heads (Head
n) and key-value heads (KV head) are set to 8.

A.2. Cuboid merging algorithm

Voxel space segmentation. We describe the detailed al-
gorithm for the initial simple segmentation on the target
voxel O here.

We start by studying how to cover the binary voxel rep-
resentation using at most k rectangles while minimizing the
total volume. Given a binary 3D array where 1 represents
the target shape and 0 represents the background, we begin
by identifying the minimum bounding box that encloses all
target voxels.

We then iteratively refine this initial box through a dy-
namic programming approach. At each iteration, we iden-
tify the rectangle that, when subdivided, would eliminate
the largest contiguous region of background voxels.

The subdivision process depends on the position of the
removed background region. When removing a background
region from a corner, the remaining volume is partitioned
into 2 new rectangles. When removed from an edge (but not
a corner), the remaining volume is partitioned into 3 new
rectangles. When removed from the interior (not touching
any edge), the remaining volume is divided into 4 new rect-
angles, splitting along horizontal or vertical planes. This
position-dependent subdivision optimally preserves the tar-
get geometry while eliminating empty spaces.

The algorithm considers both horizontal-first and
vertical-first splitting strategies, selecting the one that better
minimizes total volume. The iterative refinement continues
until either the maximum allowed number of rectangles k is
reached or no further optimization is possible. This results
in a compact representation that closely approximates the
original voxel shape while maintaining a controlled number

of segments. This initial segmentation serves as the foun-
dation for subsequent refinement steps in our pipeline.

Dynamic threshold. To encourage the merging of
smaller cuboids while penalizing the merging of larger
ones, we introduce a dynamic threshold mechanism. The
dynamic threshold τdynamic is computed as a function of the
merged cuboid’s volume, using the following formula:

τdynamic(VC) = τmin + (τmax − τmin) · exp
(
−VC

S

)
, (1)

where τmin and τmax are the minimum and maximum
threshold values, VC is the volume of the merged cuboid
C, and S is a scaling parameter that controls the rate of ex-
ponential decay.

The merging algorithm proceeds iteratively. We attempt
to merge each pair of cuboids using the predefined threshold
(either static or dynamic). If merging is successful, the two
cuboids are replaced by the merged cuboid, and the process
continues until no further merges are possible.

we provide an algorithm to illustrate the cuboid merging
process, which plays a key role in maintaining an efficient
representation of 3D scenes. The pseudocode for the algo-
rithm is presented in Algorithm 1.

B. Dataset

B.1. Failure cases in 3D-FRONT

As described in the main text, the 3D-FRONT dataset con-
tains numerous object intersections. As shown in Figure 1,
the 3D-FRONT dataset contains numerous examples of ob-
ject intersections. These intersections can occur between
various objects, such as tables and chairs, beds and night-
stands, as well as wardrobes.

B.2. 3D-FRONT and 3DFRONT-NC comparison

We computed the non-intersection rate (NIRate) for both
the 3D-FRONT and 3D-FRONT-NC datasets. Figure 3 il-
lustrates our findings, showing that our curated dataset, 3D-
FRONT-NC, has significantly fewer object intersections.

B.3. Distributions of 3DFRONT-NC

Figure 4 illustrates the average cuboid lengths across vari-
ous furniture categories. The category related to desks ex-
hibits the longest average cuboid length, highlighting the
inherent complexity of desks.



Algorithm 1 Cuboid Merging with Dynamic Threshold

1: Input: List of cuboids C = {C1, C2, . . . , Cn}, initial
threshold τinit, dynamic scaling factor S

2: Output: Merged cuboids list Ĉ
3: Initialize Ĉ ← C
4: Set changed to True
5: while changed do
6: Set changed to False
7: Select pairs of adjacent cuboids from Ĉ
8: for each selected pair (Ci, Cj) do
9: Calculate the bounding cuboid Cbounding

10: Compute volumes VCi
, VCj

, and VCbounding

11: Calculate dynamic threshold τdynamic(VC)
12: if VC

VA+VB
< τdynamic then

13: Merge Ci and Cj into Cbounding

14: Remove Cj from Ĉ
15: Set changed to True
16: break from the loop once a merge occurs
17: end if
18: end for
19: end while
20: return Ĉ

Figure 1. Examples of object intersections in the 3D-FRONT
dataset, with collided objects highlighted in red circles.

We also analyzed the cuboid representation lengths in
bedroom, living room, dining room, and library scenes and
plotted their distributions. Figure 2 illustrates the distribu-
tion of cuboid lengths in each scene. It can be observed
that the living room and dining room have longer cuboid
lengths, likely due to the higher number of objects in these
scenes.

C. Computation cost

We compare the model size, inference time per forward
pass, as well as the GPU time and GPU memory consump-

tion during training of our method with others in Table 1.
Additionally, We measured the average object retrieval

time over 1,000 sampled scenes and compared it with
ATISS and DiffuScene. The average retrieval time per ob-
ject for ATISS, DiffuScene, and our method is 0.57s, 0.45s,
and 0.70s, respectively, showing that our approach adds
only a small overhead.

Methods Params (M) Forward time GPU hours GPU Mem. Retr. (s/obj)

ATISS 8.4 36.68 ms 190 h 1.99 G 0.57
DiffuScene 77.6 41.12 ms 185 h 3.69 G 0.57
Ours 27.4 29.63 ms 55 h 11.8 G 0.70
Ours w/ rej. 27.4 29.63 ms 175 h 11.8 G 0.70

Table 1. Comparison of computation cost for different methods.

D. Cuboid generation procedure evaluation
During the initial experiments, we explored some shape ab-
straction methods, but we found that some methods [1, 2]
do not meet our goal of modeling with cuboids, and some
methods are trained on specific ShapeNet categories and
lack sufficient generalization to 3D-FRONT. Therefore, we
designed our own cuboid shape abstraction method that
works well on 3D-FRONT.

We compare our method with a relatively recent work [3]
on 3D-FRONT. For convenience, we refer to it as CAVS.
We use the authors’ checkpoint trained on ShapeNet Chair
and test it on 3D-FRONT Dining Chair. Our results, shown
in Tab. 2 and Fig. 5, demonstrate superior performance.

Method ChamferDistance-L1 ↓ ChamferDistance-fscore ↑ 3D-IoU ↑

CAVS. [3] 0.013 0.331 0.246
Ours 0.008 0.412 0.368

Table 2. Comparison between our shape abstraction method with
CAVS. Our shape abstraction method does not rely on neural net-
works, yet still achieves significant improvements.

E. Failure cases of CASAGPT
Cuboid generation plausibility. We perform object re-
trieval by computing 3D IoU on voxel grids. For a gener-
ated object’s cuboid assembly, we compute its OBB box,
align it to the origin, and select the candidate with the high-
est 3D IoU. Fig. 6 highlights extreme anomaly cases with
very low max 3D IoU. In most cases, our cuboid sequences
resemble reasonable objects and failure cases are rare.

Cross boundary. Figure 7 presents some failure cases
of our method. Firstly, boundary constraints were not ex-
plicitly considered during training, leading to results where
some objects exceed the floor boundaries (first row).



20 40 60
0

200

400

600

Co
un

t

Bedroom

25 50 75 100
0

20

40

60

Co
un

t

Living room

25 50 75 100
0

20

40

60

80

100

Co
un

t

Dining room

20 40 60
0

10

20

30

40

50

Co
un

t

Library

Figure 2. Distribution of cuboid representation lengths in different room scenes. The histograms depict the frequency of cuboid lengths in
bedroom, living room, dining room, and library scenes, showcasing the variation in cuboid sizes across these environments.

Bedroom Living room Dining room Library
0

20

40

60

80

100

NI
Ra

te
 (%

)

77.9%

53.87% 50.11%

67.48%

96.91%
86.35% 84.89%

94.41%

Dataset
3D-FRONT
3DFRONT-NC

Figure 3. Comparison of non-intersection rates (NIRate) be-
tween the 3D-FRONT and 3D-FRONT-NC datasets across dif-
ferent room types. The curated 3D-FRONT-NC dataset exhibits
significantly higher NIRate, indicating fewer object intersections,
particularly in bedrooms and libraries.

Ergonomic issue. Secondly, while we aim for the gener-
ated results to comply with ergonomic principles, our model
occasionally produces results that do not meet these stan-
dards. For instance, in the first column of the second row,
there are areas on the floor that are inaccessible to people
and disconnected from other floor areas. In the second col-
umn of the second row, there is no lighting. In the third
column of the second row, a chair is placed in an inacces-
sible location. In the fourth column of the second row, the
sofa’s main orientation does not face the TV cabinet.

F. More visual results

We present additional results demonstrating the capabilities
of our model in various tasks. As shown in Figure 8, our
model excels in scene completion tasks. Figure 9 shows
our model exhibits randomness and diversity. Furthermore,
we tested our model on customized floor plans, achieving
strong performance on these tailored designs, as illustrated
in Figure 10. Finally, our model’s effectiveness in synthesis
tasks is showcased in Figures 11 to 13.

0 2 4 6
Cuboid Length

Barstool
Bookcase / jewelry Armoire

Ceiling Lamp
Chaise Longue Sofa

Children Cabinet
Classic Chinese Chair

Coffee Table
Corner/Side Table

Desk
Dining Chair
Dining Table

Drawer Chest / Corner cabinet
Dressing Chair
Dressing Table

Stool
Kids Bed

King-size Bed
L-shaped Sofa

Lazy Sofa
Lounge Chair

Loveseat Sofa
Nightstand

Pendant Lamp
Round End Table

Shelf
Side Cabinet

Single bed
TV Stand

Three-Seat / Multi-seat Sofa
Wardrobe

Wine Cabinet
armchair

Figure 4. Average cuboid length for different furniture categories.
Note that “footstool / sofa stool / bed end stool / stool” is simpli-
fied as “stool”, “lounge chair / cafe chair / office chair” as “lounge
chair”, and “sideboard / side cabinet / console table” as “side cab-
inet”.

References
[1] Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien

Bouaziz, Geoffrey Hinton, and Andrea Tagliasacchi. CvxNet:
Learnable convex decomposition. In CVPR, 2020. 2

[2] Despoina Paschalidou, Ali Osman Ulusoy, and Andreas
Geiger. Superquadrics Revisited: Learning 3D shape parsing
beyond cuboids. In CVPR, 2019. 2

[3] Kaizhi Yang and Xuejin Chen. Unsupervised learning for
cuboid shape abstraction via joint segmentation from point
clouds. ACM TOG, 2021. 2



Model CAVS Ours Model CAVS Ours

Figure 5. CAVS performs reasonably well on relatively in-distribution models (left), but 3D-FRONT contains many OOD models (right),
where CAVS struggles.

0.904 0.802 0.607 0.302 0.097

G
en

er
at

ed
C

ub
oi

ds
R

et
rie

ve
d 

C
ub

oi
ds

R
et

rie
ve

d 
O

bj
ec

t

Figure 6. Cuboid assemblies and retrieved objects under different max 3D IoU conditions.

C
ro

ss
 b

ou
nd

ar
y

Er
go

no
m

ic
 is

su
e

Figure 7. Failure cases of our method, including boundary crossing (first row) and ergonomic issues (second row).



P
ar

ti
al

 S
ce

n
es

A
T

IS
S

O
u

rs

Figure 8. Comparison of scene completion results between ATISS and our method. We present results for the bedroom scene (left two
columns) and the living room scene (right two columns).

Figure 9. Sampling results for 2 different floor plans in the living room scene.



Scene floor

Figure 10. Generalization beyond training data. We present four synthesized bedrooms generated based on four customized room layouts
using our model.



DiffuSceneLayoutGPT OursATISS Reference

Figure 11. Additional results of bedroom scene synthesis. We compare our method with the state-of-the-art methods, where our results
present better plausibility with fewer object collision issues.



DiffuSceneLayoutGPT OursATISS Reference

Figure 12. Additional results of living room / dining room scene synthesis show that compared to the state-of-the-art methods, our approach
has fewer object collision issues, especially in the pairing of tables and chairs.



DiffuSceneScene floor OursATISS Reference

Figure 13. Additional results of living room / dining room scene synthesis with various floor planes demonstrate that our method can fit
well to the given floor layouts.


	. Implementations
	. Model architecture
	. Cuboid merging algorithm

	. Dataset
	. Failure cases in 3D-FRONT
	. 3D-FRONT and 3DFRONT-NC comparison
	. Distributions of 3DFRONT-NC

	. Computation cost
	. Cuboid generation procedure evaluation
	. Failure cases of CasaGPT
	. More visual results

