FlashGS: Efficient 3D Gaussian Splatting for Large-scale and High-resolution
Rendering

Supplementary Material

Overview

This supplementary material further elaborates on the de-

tails of this work, providing extended analyses and data.

These additions further validate the importance and com-

pleteness of our contributions. The content is organized as

follows:

 Section 6 offers a comprehensive discussion of FlashGS,
including its portability and limitations.

* Section 7 presents a more detailed illustration of the un-
derlying significant redundancies in prior work.
e Section 8 illustrates the quality of rendered images,
demonstrating that FlashGS can preserve image details.
 Section 9 provides a detailed description of the low-level
implementation of our CUDA kernels, supporting our al-
gorithmic design.

» Section 10 presents additional experimental data, further
demonstrating the sources of our acceleration.

* Section ?? provides more tests on different aspects to
show the performance impact of FlashGS.

6. Discussion and Limitation

FlashGS should be easy to integrate with other 3DGS ap-
proaches, further enhancing their performance. The design
is independent of any specific 3DGS variant and functions
as a standalone high-performance 3DGS renderer. For other
algorithmic approaches, as long as they retain the original
tile-based rasterization mechanism of 3DGS, our optimiza-
tions remain effective. For other acceleration techniques,
such as distributed computing, our optimization strategies
are orthogonal to theirs, enabling integration for additional
performance improvements. As for some works that also
focus on renderer optimization, our approach addresses the
foundational challenges through an in-depth analysis, ef-
fectively resolving issues that have been inadequately ad-
dressed or even negligated.

The effectiveness of our approach is influenced by the
characteristics of the original scene, specifically the size and
distribution of the Gaussians representing the scene. When
the Gaussians in a scene are small and evenly distributed,
the performance improvement of our method relative to ex-
isting approaches may be diminished. For instance, in an
extreme case where all Gaussians are evenly distributed
across the screen and each Gaussian covers only a single
tile, although performance issues are generally not encoun-
tered in such scenarios, the benefit of our method would be
less pronounced.

7. Redundant Gaussian-tile Pair Analysis

We provide a clearer illustration of the redundancies men-
tioned in line 79, Section 1, emphasizing the critical role of
our precise intersection algorithm described in Section 3.2.

We can roughly model the total redundant Gaussian-tile
pairs as: N = ng, - Naye, Where nyq is the number of Gaus-
sians and ng,4 is the average redundant intersections per
Gaussian. For large-scale scenes, the number of Gaussians
can be up to tens of millions [52]; for high resolutions,
Navg, Which is the average number of false intersections
per Gaussian, can increase. We will further explain these
claims: For an ellipse with a major axis size a and minor
axis size b. If the ellipse itself is axis-aligned, the wasted
area of its axis-aligned bounding box (AABB) is 1 — 7,
approximately 21%. Next, we consider the case where
the angle between the ellipse’s major axis and the horizon-
tal axis is t. We start by analyzing the scenario with the
maximum area waste, which requires solving the following
constrained optimization problem: x2 + 3% = a2, where
r ~ acost and y =~ asint. We maximize zy (the largest
redundant area). Equivalently, we maximize a? sint cost.
When t = 45°, sin t cost reaches its maximum value, giv-
ing xy = % In this case, the wasted area becomes “; - %“b
and the redundant ratio is 1 — % . g Therefore, when the
ellipse is very flat (3 is very small), the wasted area can be
large, even approaching 100%.

%8

Figure 6. The redundancy of AABB: The colored regions repre-
sent the real intersection between the ellipse and the tiles. The
valid intersections correspond to the three diagonal blocks in the
matrix of tiles. In this example, the ellipse has a tilt angle ¢t = 45°
with the horizontal axis and a major axis length of a.

Under these circumstances, we further consider the tile-
based intersection issue: when ¢t = 45°, meaning the AABB
is a square, the ellipse at least intersects with three diagonal

_ Ground Truth

Figure 7. We show comparisons of different methods and the corresponding ground truth images. We observe that all methods, except
AdRGS-Full (with smearing artifacts), effectively preserve the details of the original image. The scenes are Truck and Train from Tanks &
Temple [24], Playroom and DrJohnson in DeepBlending [17]. The differences in quality are highlighted by arrows and insets.

tiles along, as depicted in Figure 6. The actual intersection
area within the AABB is 3’72;2 , where n? is the total number
of tiles covered by this square AABB. As n increases, this
ratio decreases. In other words, the AABB of the ellipse can
occupy more tiles, when the relative size between the ellipse
and the tile increases. This corresponds to high-resolution
scenarios, since with a fixed tile size, higher resolutions will
introduce more tiles across the screen (finer tile grid).

8. Visual Comparison

We present and compare the rendering results produced by
FlashGS and previous methods, as shown in the Figure 7.

FlashGS demonstrates efficient rendering while maintain-
ing high image quality, preserving details effectively, sim-
ilar to vanilla 3DGS, AdR-AABB, and gsplat. However,
for AARGS-Full, one of the current state-of-the-art rending
methods, its load-balancing performance benefits only man-
ifest after retraining the model. During retraining, AdRGS-
Full reduces the number of Gaussians in regions with ex-
cessive overlaps, while increasing Gaussians in surrounding
areas to compensate for the quality loss. Despite these ad-
justments, we still observe a noticeable loss of detail. We at-
tribute this to the loss of information inherent in the original
scene. The distribution and details of objects in the scene
naturally result in uneven Gaussian distributions. AdRGS-

Full’s approach to balancing the Gaussian distribution by
interfering with the scene reconstruction leads to detail loss.
This presents as smearing artifacts in the rendered images.
For instance, in Truck, AdRGS-Full alters the shape of the
pillar and loses the letters on the sign and the texture de-
tails on the lamp base. In the Train examples, it removes
the spots on the metal surface and the gravel patterns on the
ground. In Playroom, it blurs the contours of the letter @
and the details of the white plug. In DrJohnson, AARGS-
Full loses the carpet patterns and the fine folds in the boots.

9. Low-level Implementation and Optimization

We elaborate on the implementation and optimization de-
tails discussed in Section 4.1. These optimizations pri-
marily encompass parallelism and memory enhancements,
such as efficient task partitioning to improve data reuse,
assembly-level implementations to enhance instruction ef-
ficiency, reducing thread divergence to minimize resource
idling, and various memory optimizations.

Thread Level Workload Partition We avoid splitting
the task of one tile into multiple warps, considering the
task dispatch granularity. In the original implementation,
each thread only processed one pixel, and each 16 x 16 tile
is divided into 8 warps. The obvious disadvantage of this
method is that it requires reading the same memory address
8 times, and even using shared memory cannot eliminate
this overhead. Therefore, we assign the entire tile to one
warp, so that each thread handles multiple pixels. In addi-
tion to reducing memory load operations, the benefit also
includes reducing the floating-point operations. Since the
pixels are arranged in a regular two-dimensional array, for
each tile, each column shares the same x-coordinate and
each row shares the same y-coordinate. When calculating
the distance between the pixels and the center of an ellipse,
(r — 20)? and (y — yo)? are common subexpressions. By
assigning multiple pixels to each thread, we expose the op-
portunities for common subexpression elimination (CSE)
to further improve computational performance by reducing
repetitive floating-point operations.

Assembly Level Optimizations We also utilize
assembly-level optimizations to better leverage efficient
instructions supported by the GPUs. In Gaussian computa-
tions, an important operation is to evaluate the exponential
function. Using ___expf built-in function still generates
additional floating-point operations. Due to the fact that the
special function unit (SFU) directly supported by the hard-
ware has a base of 2, this function needs to be multiplied
by the constant logze to replace the base when generating
the SASS instructions. Firstly, we fold this constant with
the other constants before. However, there are still 3 addi-
tional instructions in SASS for handling particularly small
values, as SFU does not support outputting non-normalized
floating-point numbers. Specifically, for values ranging

from -252 to -126, calculate ¢ = 2°-% to output a normal-
ized floating-point number, then calculate ¢? to obtain a
relatively accurate non-normalized floating-point number
to approximate 2. But when we put it in the background
of the task, we will find that such a small value is not worth
considering at all, because when the opacity is so close to
zero, it is already no different from zero in the following
alpha blending stage. Therefore, we avoid this overhead
by using the PTX instruction ex2 .approx.ftz.£32 to
directly use the SASS instruction mufu.ex2, which tells
the compiler not to consider non-normalized floating-point
number.

Warp Divergence Control The original implementation
will determine whether the opacity is less than 1/255 after
calculating the Gaussian function, and if so, skip the alpha
blending stage. Since we have already eliminated the vast
majority of such situations before, this judgment becomes
meaningless except leading to warp divergence. Warp di-
vergence seriously affects computational efficiency, so we
have removed this judgment.

Memory Access Optimization In the preprocessing,
some memory access issues remain, particularly with the
SH coefficients, which consist of 48 floats per Gaussian and
are non-reusable. These massive uncoalesced and scalar ac-
cesses to global memory put significant pressure on the L1
cache bandwidth. We mitigate this problem through sev-
eral memory access optimizations. For non-reusable shs,
we reduced the number of memory access instructions by
using vectorized loads. For reusable parameters (such as
projection matrices and transformation matrices), we lever-
aged constant memory to reduce latency. Specifically, we
directly pass these data as parameters to the kernel instead
of using pointers to their memory locations.

Memory Management 3DGS employs a dynamic
memory allocation strategy, which can result in non-
negligible overhead, especially when handling a large num-
ber of memory allocation requests. We adopt a more static
strategy. We avoid the performance reduction of frequent
memory allocation, which could be caused by the overhead
of system calls and memory fragmentation. We extract the
dynamic memory allocation operations and related prepro-
cessing operations to the initial stage. For example, a uni-
fied preprocessing can be done in advance for computations
involving different viewpoints of the same scenario.

10. Detailed Evaluation Results

We further analyze the sources of our acceleration by pre-
senting specific data and metrics. The following experi-
ments highlight the performance of FlashGS compared to
the vanilla Gaussian implementation on representative test
cases, including frames with the highest and lowest speedup
achieved by FlashGS.

Runtime Breakdown Analysis In this section, we com-

FlashGS
3DGS
FlashGS
3DGS
FlashGS
3DGS
FlashGS
S
3DGS

mrendering Osorting Mpreprocess Mothers

me(resolution)-framelD)

0 0.1 0.2 03 0.4 0.5 0.6 0.7 08 0.9 1
Normalized Time

Figure 8. Rasterization runtime breakdown on 6 representative
frames from different datasets, normalized to 3DGS.

pare and analyze the runtime breakdown of FlashGS to
3DGS, aiming to reveal the source of our excellent per-
formance. Figure 8 shows the rasterization time and the
breakdown for 6 representative frames shows max or min
speedup. This demonstrates that we have accelerated all
stages, including preprocess, sort, and render. In FlashGS,
these stages respectively account for average 19.6%, 29.1%,
and 47.6% of the total time, whereas in 3DGS, they account
for 13.2%, 25.4%, and 59.6%. The optimizations in the
preprocess and render stages have already been discussed
earlier, while the speedup in the sorting stage is primarily
due to the reduction in the number of key-value pairs to be
sorted after applying our precise intersection algorithm. We
will give a more detailed analysis below.

Bissued instructions

B memory transactions
0.57

0.60
2

0.50
2
s 040
T 030
N
= 020
=
= 010
4

0.00

- 14 227 139 a0p)S0
N\aﬂ""c w(gl““son@‘q \,\,\e@‘q“c\‘(w%“%’za (\080?3 (10809

Figure 9. The number of instructions issued in rendering and the
memory transactions in preprocessing. All results are normalized
to 3DGS.

Profiling Results We further demonstrate our optimiza-
tions in the rendering and preprocessing stages through pro-
filing results of memory and compute units, as shown in the
figures. Figure 9 shows that we reduce the issued instruc-
tions in the rendering stage, alleviating the computation-
bound problem. This proves the effectiveness of our pre-
cise intersection algorithm and the optimizations for low-
latency rendering. The total issued instructions is signif-
icantly reduced by one to two orders of magnitude. For
memory access transactions in preprocessing, we also re-
duced the number of global memory accesses by 43%-87%
compared to 3DGS. Figure 10 further shows the reason for

0.40 Brendered kv pairs
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

instructions per kv
0.3

Normalized to 3DGS

-50
‘,“(4\0 \,‘e(m 149 osop 22 o“gm-‘:" (080P)

AK)2
C\W(b onns “c\&(yain!

Ma atrix
Figure 10. Number of rendered Gaussian-tile (kv) pairs and in-
structions issued per pair of FlashGS (Normalized to 3DGS).

the significant instruction reduction in the rendering stage,
which is dominant in the rasterization. In tile-based render-
ing, the total number of issued instructions is the product of
the number of tiles and the instructions per tile. Therefore,
this reduction mainly stems from two aspects. In Figure 10,
the number of rendered key-value pairs benefit from our
intersection optimization, reducing by 68%-96%. The in-
structions involved in each tile’s computation also decrease
by 67%-71%, as we further optimize the render operator at
the instruction level. The reduction in the number of gener-
ated key-value pairs also benefits the sorting process, as it
significantly decreases the size of the list to be sorted. Ad-
ditionally, less memory is required to store key-value pairs.

11. FlashGS Performance in More Aspects

We will provide more experiments to demonstrate and dis-
cuss the performance impact of FlashGS, including tests on
more datasets and platforms, as well as its effects on train-
ing and other strategies.

Rendering Performance on Mip-NeRF 360 Table 5
presents the FPS and speedup achieved by FlashGS com-
pared to vanilla 3DGS on the Mip-NeRF 360 dataset for Bo-
sai and Bicycle at different resolutions. The results demon-
strate that FlashGS effectively eliminates redundant inter-
sections, achieving a speedup ranging from 3.47 x to 12.3 %,
thereby consistently enabling real-time rendering.

Table 5. Speedup across different scenes from Mip-NeRF 360
Dataset and resolutions (3DGS/FlashGS) on NVIDIA A800.

Bonsai Bicycle
Resolution FPST #Intersects| Speedupt|Resolution| FPST #Intersects] Speedup?
3118x2078(67.12/458.5 13.1M/2.62M 6.83x [4946x3286|13.62/167.575.4M/9.82M 12.3x
1200x799 [195.0/677.22.85M/0.849M 3.47x | 1237x822 |60.62/254.17.78M/2.72M 4.19x

Performance on Different GPU Table 6 presents the per-
formance of FlashGS on two GPUs. Since the rendering
step is heavily dependent on FP32 performance, the 3090

(35.6 TFLOPS) outperforms the A100 (19.5 TFLOPS). Al-
though memory-bound tasks like sorting benefit from the
A100’s higher bandwidth, the rendering bottleneck results
in an overall slower performance compared to the 3090.
Nevertheless, FlashGS consistently achieves real-time ren-
dering across different test datasets and platforms.

Table 6. Rendering speed of FlashGS on NVIDIA 3090 and
A100).

AvgFPS 1| Truck Train Playroom | DrJohnson | MatrixCity | Rubble
Resolution|1080p| 4k |1080p| 4k |1080p| 4k |1080p| 4k |1080p| 4k |4608+*3456
3090 |450.5|289.0518.1|301.2|1694.4|367.7) 613.5|334.4/310.6|207.4| 183.9
A100 |355.9|252.7/1400.3|272.1|522.8|276.5|471.7|294.9|293.2|186.7| 154.1

Impacts on Training Speed Table 7 shows the acceler-
ated forward, backward, and loss computation in training
GSDF. This demonstrates the effectiveness of our optimiza-
tion, and its compatibility with optimized fused_ssim and
atomic_add in Taming 3DGS [35].

Table 7. GSDF [49] training time with different optimizations.

method Forward | Loss | Backward | Total

baseline 17.55ms | 4.28ms 38.67ms 8m12s
+fused_ssim | 17.55ms | 0.62ms | 37.53ms | 7m59s
+FlashGS 10.68ms | 0.86ms | 25.52ms | 6m22s
+atomic_opt | 10.44ms | 0.77ms | 17.05ms | 4m3s

Integrate with Level-of-Detail Strategies Some en-
hanced 3DGS representations incorporating multiple Lev-
els of Detail (LOD) enable rendering each pixel with a
small and manageable set of Gaussians. Our proposed soft-
ware pipelining remains effective in accelerating these more
balanced scenes. FlashGS can be easily integrated with
Octree-GS [41], achieving a 1.6 speedup in the rasteriza-
tion stage. In an extreme case (one tile with 10 Gaussians)
we set, Nsight Compute measurements show that the base-
line 3DGS and FlashGS exhibit latencies of 23k and 11k
cycles, respectively. This demonstrates that our pipeline ef-
fectively reduces startup overhead and can enhance LOD-
based methods.

	Introduction
	Related Work
	Novel View Synthesis
	High-Performance 3DGS

	Method
	Opacity-aware AABB Definition
	Pose-aware Precise Gaussian-tile Intersection
	Size-aware Adaptive Gaussian Scheduling
	Latency-aware Pipelined Tile Rendering

	Evaluation
	Experimental Setup
	Performance Comparison
	Ablation Study
	Redundancy Reduction
	Compared to Hardware Rasterization Methods

	Conclusion
	Discussion and Limitation
	Redundant Gaussian-tile Pair Analysis
	Visual Comparison
	Low-level Implementation and Optimization
	Detailed Evaluation Results
	FlashGS Performance in More Aspects

