
Gaussian Splashing: Unified Particles for Versatile Motion Synthesis and
Rendering

Supplementary Material

7. Simulation details
7.1. Position-based dynamics
PBD/XPBD treats a dynamic system as a set of N ver-

tices, i.e., x = [x0,x1, ...,xN ]� and M constraints, i.e.,

C(x) = [C1(x), C2(x), ..., CM (x)]�. Here, x represents

the position of vertices and C(x) represents the set of con-

straints. Specifically, the total system potential U is de-

fined as a quadratic form of all the constraints such that

U = 1
2C

�(x)α−1C(x). Here, α is the compliance ma-

trix, i.e., the inverse of the constraint stiffness. For example,

if there are only two vertices and they form a mass-spring

system, constraint and compliance matrix could be written

as C(x) = [‖x0−x1‖−d0]
� and α = [k], where d0 is the

rest length of the spring and k is the stiffness of the spring.

Motion at each time step can be solved by minimizing

the system energy. However, PBD/XPBD offers an easy

and efficient simulation modality, converting the variational

optimization to the so-called constraint projections.

XBPD estimates an update of constraint force (i.e., the

multiplier) Δλ by solving:
[
Δt2∇C(x)M−1∇C�(x) +α

]
Δλ = −Δt2C(x)−αλ,

(13)

where Δt is the time step size, and M is the lumped mass

matrix. The update of the primal variable Δx can then be

computed as:

Δx = M−1∇C�(x)Δλ. (14)

The parallelization of XPBD is enabled with a Gauss-

Seidel-like scheme, which computes Δλj at each constraint

Cj independently:

Δλj ← −Δt2Cj(x)−αj

Δt2∇CjM−1∇C�
j +αj

. (15)

A typical XPBD simulation loop is shown in Algorithm 1.

7.2. Position-based fluids
We employ the Position-Based Fluids (PBF) [40] as our La-

grangian fluid synthesizer. PBF is based on PBD, which

means it also use constraint projections to simulate fluid be-

haviour. In PBF, fluid is composed of a large amount of

particles. To enforce the fluid incompressibility, PBF im-

poses a density constraint Cρ
i on each particle, maintaining

the integrated density ρi computed by the SPH kernel as:

Cρ
i =

ρi
ρ0

− 1 =
∑
j

mj

ρ0
W (pi − pj , r)− 1, (16)

Algorithm 1 XPBD simulation loop for time step n+ 1

1: predict position x̃ ⇐ xn+Δtvn+Δt2M−1fext(x)
n

2:

3: initialize solve x0 ⇐ x
4: initialize multipliers λ0 ⇐ 0
5: while i < solverIterations do
6: for all constraints do
7: compute Δλ using Eq. 15

8: compute Δx using Eq. 14

9: update λi+1 ⇐ λi +Δλ
10: update xi+1 ⇐ xi +Δx
11: end for
12: end while
13: update positions xn+1 ⇐ xi

14: update velocities vn+1 ⇐ 1
Δt (x

n+1 − xn)

where mj is the mass of particle j. pi is the position of

particle i, W is the SPH kernel function and r is the kernel

radius. Intuitively, projecting this constraint to 0 ensures

that the density at the current time remains consistent with

the initial state. We use the following cubic SPH kernel:

W (p, r) =

⎧⎪⎨
⎪⎩

8
πr3 (6q

2(q − 1) + 1), 0 ≤ q ≤ 0.5
16
πr3 (1− q)3, 0.5 < q ≤ 1

0, otherwise

(17)

where q = ‖p‖
r . The Jacobian of constraint is computed as:

∇pk
Cρ

i =

⎧⎪⎨
⎪⎩

∑
j

mj

ρ0
∇pi

W (pi − pj , r), k = i

mj

ρ0
∇pj

W (pi − pj , r), k = j.
(18)

The gradient of the kernel function is:

∇pW (p, r) =

⎧⎪⎨
⎪⎩

48
πr5 (3q − 2)p, 0 ≤ ‖p‖

r ≤ 0.5

− 48
πr5

(1−q)2

q p, 0.5 < ‖p‖
r ≤ 1

0, otherwise

(19)

GSP also includes a position-based surface tension

model [73] to better capture the dynamics of the fluid sur-

face. We first detect whether a particle (i.e., a Gaussian

kernel) is on the fluid surface based on occlusion estima-

tion. Specifically, we encapsulate a particle with a spherical

cover or screen. Each of its neighboring particles generates

a projection on the screen (because a particle has a finite



volume). The particle is considered on the fluid surface if

the total projection area from its neighbors is below a given

threshold.

In the original paper [73], surface detection is imple-

mented on the CPU. It is noteworthy that surface detection

can be parallelized on the GPU to expedite the simulation,

as the calculation of each particle’s occluding ratio on the

screen is independent of the others.

Particle

Neighbors

Figure 12. Detection of
surface particles. An in-

terior particle is detected if

its screen is widely shad-

owed by its neighbors. A

boundary particle is de-

tected if at least one part of

the particle’s screen is not

shadowed.

For each neighboring par-

ticle, its occluding area on the

spherical screen is calculated

as follows:

θ = tan−1(
Δpy

Δpx +Δp2
z

)

φ = tan−1(
Δpx

Δpz
) (20)

Δθ = tan−1 R

‖Δp‖2 −R2

Δφ = Δθ

where Δp is the vector from

the detection particle to the

neighboring particle and R is

the particle radius. The shad-

owed area on the spherical screen is then [θ−Δθ, θ+Δθ]×
[φ−Δφ, φ+Δφ]. We parameterize the screen as an 18×36
environment map, with each column of the environment

map corresponding to 18 bits of an integer. We then mask

36 integers and count the mask ratio.

After detecting surface particles on the fluid, we apply

tension on the surface. Tensions tends to minimize surface

area. Therefore, PBF applies an area constraint to each sur-

face particle to minimize the local surface area nearby. We

start by calculating the normal ni of surface particles i as:

ni = normalize(−∇piC
ρ
i ), (21)

where Cρ
i = 0 indicates the particle is inside the fluid, and

Cρ
i = −1 indicates it is outside. After that, we project the

neighboring surface particles onto a plane perpendicular to

ni and triangularize the plane. The area constraint can then

be built as:

CA
i =

∑
t∈T (i)

1

2
‖(pt2 − pt1)× (pt3 − pt1)‖ (22)

where T (i) is the set of neighboring triangles for particle

i. We use the 2D Delaunay triangulation to construct the

triangles on the local surface. This process is sequential

and cannot be parallelized on the GPU. However, it is suffi-

ciently fast and we translate it from CPU to GPU.

Figure 13. Different sampling strategies. We compare the re-

sults of different sampling strategies: (left) fill the particle based

on the density grid calculated using Gaussian kernels [72], and

(right) uniformly sample within NeuS reconstruction. The point

distribution generated by vanilla 3DGS is uneven, which hardly

samples the legs or seat of the chair.

To promote a more uniform particle distribution, addi-

tional distance constraints are introduced to push apart par-

ticles that are too close to each other:

CD
ij = min {0, ‖pi − pj‖ − d0} , (23)

where d0 is the distance threshold. The Jacobian of aboved

constraints are:

∇t1C
A
t (p) =

(pt2 − pt1)× (pt3 − pt1)× (pt3 − pt2)

2 ‖(pt2 − pt1)× (pt3 − pt1)‖ ,

∇t2C
A
t (p) =

(pt3 − pt2)× (pt1 − pt2)× (pt1 − pt3)

2 ‖(pt3 − pt2)× (pt1 − pt2)‖ ,

∇t3C
A
t (p) =

(pt1 − pt3)× (pt2 − pt3)× (pt2 − pt1)

2 ‖(pt1 − pt3)× (pt2 − pt3)‖ ,

∇iC
D
ij (p) =

⎧⎨
⎩
0, ‖pi − pj‖ > d0,
pi − pj

‖pi − pj‖ , Others.

∇jC
D
ij (p) =

⎧⎨
⎩
0, ‖pi − pj‖ > d0,
pj − pi

‖pi − pj‖ , Others.

(24)

8. Sampling and interpolation details
In practice, we found that an uneven distribution of Gaus-

sian kernels results in unstable and inaccurate motion syn-

thesis, while a distribution that is too uniform can detri-

mentally affect rendering quality. Gaussian kernels tend

to distribute primarily unevenly around the surfaces and

edges of objects, leading to inaccurate boundary descrip-

tions, which are crucial for interactions between objects in

simulation. Conversely, adaptively distributed anisotropic

Gaussian kernels are key to representing the spatially vary-

ing texture on the object. To address this issue, we maintain

two separate sets of points: one sampled from the NeuS

mesh surface for simulation, and the other consisting of



trained Gaussian kernels for rendering. We compare the

results of directly sampling from trained Gaussian kernels

to those of sampling from NeuS in Fig. 13. The former

method can result in sparsely sampled regions, especially

for objects with thin parts, potentially affecting simulation

quality.

We then discuss how to animate trained Gaussian kernels

for rendering dynamics. Denote the set of trained Gaus-

sian kernels for rendering as Sr, and the set of sampled

points from NeuS for simulation as Ss. At time 0, we ini-

tialize GMLS kernels on Ss and find the k nearest neigh-

bors {p0
s,j : j ∈ N (i)} from Ss for each point pr,i in

Sr. Here, N (i) denotes the set of k nearest neighboring

particles’ indices of pr,i in Ss at time 0. As the simula-

tion or motion synthesis proceeds, the position pn
s,j evolves

with time step n. We then update pr,j by interpolating from

{pn
s,j : j ∈ N (i)} with the pre-built GMLS kernel. The

interpolation of deformation is achieved in the same way,

replacing the physical quantity position p to deformation

gradient F .

9. Rendering details
Shadow As shadows are crucial to the visual outcomes in

dynamic scenes, we re-engineer nearly-soft shadows [13]

into our system to enhance realism. Following shadow map-

ping, we splat all Gaussian kernels to a camera positioned

at the point light’s location, which we denote as light-view.

The point light is aligned with the direction of the signifi-

cantly bright light in the environment map. The resolution

of the light-view image is three times that of the original

image resolution to address visual discrepancies caused by

under-sampling.

We then reproject the points seen in the camera view to

the light-view and compare their depths to the previously

splatted light-view depth image. A larger depth indicates

that the point is occluded by a nearer point and will there-

fore cast a shadow. A more robust variance method is dis-

cussed in [13]. Softer shadows can be achieved by blurring

and averaging the light-view depth image. We compute the

shadowing probability using Chebyshev’s inequality [13]

and store the results in a shadow map. Finally, we com-

posite the rendered image with the shadow map to achieve

nearly-soft dynamic shadows.

Spray, foam, and bubble To enhance the realism of flu-

ids, foam, spray and bubble particles are synthesized with

[22] as a post-processing step. Fluid-air mixtures are gen-

erated at the crest of the wave and in the impact zone of the

wave. Spray, foam, and bubble particles are advected by the

fluid and dissipate within their predefined lifetimes.

We splat these particles into a foam intensity image using

modified additive splatting. Different types of particles use

different kernels during splatting [1]. We preferred a larger

overall intensity for surface foam particles to increase their

visibility, while we used a comparatively smaller intensity

value for spray particles to make them less prominent. Fur-

thermore, we used hollow circle structures for the bubble

particles to make their appearance more convincing under-

water. The kernel typically has a radius of 2 pixels. How-

ever, in practice, we found that the kernel radius should be

scaled based on the particle’s depth in the view, as parti-

cles near the camera occupy more of the view compared to

those farther away. Finally, we apply a curve [1] on the

foam intensity image to scale it into [0, 1] and compose it

with rendering.

10. Implementation details
We set the simulation time step as 0.005 seconds throughout

the simulations. In our PBD solver, we used 10 iterations

for fluids and 50 iterations for solids for our experiments,

since mass particles on the solid models are more strongly

coupled than the ones in the fluid. During the PBF simu-

lation, the surface particles of fluids are updated every two

time steps.

11. Comparison with PhysGaussian
PhysGaussian [72] is a recent work that also integrates

physical models into 3DGS. However, its rendering mod-

ule does not support dynamic refraction and reflection, both

of which are essential for fluid rendering. PhysGaussian

employs spherical harmonics for shading, complicating ef-

fective manual editing and preventing the accurate render-

ing of dynamic fluids. In Fig. 14, we present a side-by-side

comparison. In this experiment, we transform the hot dog

on the plate to water and allow it to interact with the sta-

tionary plate. Our approach clearly demonstrates improved

rendering quality for fluids.

12. More results
We show the results of Chair (Fig. 15), Waves (Fig. 8),

Garden (Fig. 16), Lego (Fig. 17), Cup & dog (Fig. 18),

Headset (Fig. 19), Can (Fig. 20), Astronaut (Fig. 23), Fi-
cus (Fig. 21), and Bulldozers (Fig. 22). For better visual-

ization, please refer to the supplementary video.



Figure 14. Comparison with PhysGaussian [72]. We compare our method with PhysGaussian [72] for fluid editing and rendering. The

first row presents our results, while the second row shows those of PhysGaussian. In this experiment, we transform a hot dog placed on

a plate into fluid, allowing it to interact dynamically with the stationary plate. PhysGaussian struggles to render realistic fluid effects,

whereas our method effectively renders fluid and accurately captures water highlights, yielding significantly more realistic results.

Figure 15. Chair. A soft chair falls into the pool, causing deformation and ripples.

Figure 16. Flooding garden. Water leaks into the garden and submerge the table. As the water level goes up, the surface gets more vibrant

and washes the potted plant away.

Figure 17. Splashing LEGO. Through the two-way coupling dynamics, the LEGO bulldozer is animated to surf on the splashing waves.



Figure 18. “Everything is water”. Pouring water into the paper cup on the table and transforming the cup and the dog toy into water. The

water spills out.

Figure 19. Headset waterfall. Water flows from a headset hanging above an office desk, resembling a faucet. Due to surface tension, the

water forms droplets as it falls, sliding down the computer screen and splashing onto the desk, creating a puddle.

Figure 20. Water droplets on can. Droplets of water fall onto the surface of a soda can, coalesce due to surface tension and gradually

overflow.

Figure 21. Deformable ficus. A deformable ficus plant undergoes continuous shape changes as it is dragged and manipulated by external

forces.

Figure 22. LEGO bulldozers in glass bowl. A collection of LEGO bulldozer rigid bodies fall into a round glass box, colliding with each

other. They cast shadow on the ground and eventually stack and scatter throughout the box.



Figure 23. Black magic. An astronaut in space strucked by the black magic of the Trisolarans, and get transformed into a water sphere.


