Gaussian Splashing: Unified Particles for Versatile Motion Synthesis and
Rendering

Supplementary Material

7. Simulation details

7.1. Position-based dynamics

PBD/XPBD treats a dynamic system as a set of IV ver-
tices, i.e., * = [To,®1,...,2n]" and M constraints, i.e.,
C(z) = [C1(x),Cz(x), ...,Car(x)] T. Here, x represents
the position of vertices and C'(x) represents the set of con-
straints. Specifically, the total system potential U is de-
fined as a quadratic form of all the constraints such that
U = 3C"(x)a'C(x). Here, o is the compliance ma-
trix, i.e., the inverse of the constraint stiffness. For example,
if there are only two vertices and they form a mass-spring
system, constraint and compliance matrix could be written
as C(z) = [||zo —x1|| —do] " and @ = [k], where d is the
rest length of the spring and k is the stiffness of the spring.

Motion at each time step can be solved by minimizing
the system energy. However, PBD/XPBD offers an easy
and efficient simulation modality, converting the variational
optimization to the so-called constraint projections.

XBPD estimates an update of constraint force (i.e., the
multiplier) A by solving:

[APVC(z)M~'VCT (z) + a] AX = —A?C(z)—a,

(13)
where At is the time step size, and M is the lumped mass
matrix. The update of the primal variable Ax can then be
computed as:

Az =M VCT (x)AX. (14)

The parallelization of XPBD is enabled with a Gauss-
Seidel-like scheme, which computes AX; at each constraint
C'; independently:

—At20. o
AN At?Ci(x) — oy

: . 15
ARV CMIVE] + a (15

A typical XPBD simulation loop is shown in Algorithm 1.
7.2. Position-based fluids

We employ the Position-Based Fluids (PBF) [40] as our La-
grangian fluid synthesizer. PBF is based on PBD, which
means it also use constraint projections to simulate fluid be-
haviour. In PBF, fluid is composed of a large amount of
particles. To enforce the fluid incompressibility, PBF im-
poses a density constraint C! on each particle, maintaining
the integrated density p; computed by the SPH kernel as:

i m;
Cr=tr1=3 Wi —ppr) -~ 1 (16
J

Algorithm 1 XPBD simulation loop for time step n + 1

predict position & < x" + Atv" + A2M L f. . (z)"

initialize solve ¢y < x
initialize multipliers Ag < 0
while ¢ < solverlterations do
for all constraints do
compute A\ using Eq. 15
compute Ax using Eq. 14
update A\; 11 < A\; + AN
update ;1 < x; + Ax
end for
12: end while
13: update positions " ! < x;
14: update velocities v < L (2" T! — z)

R A U ol

- =
=2

where m; is the mass of particle j. p; is the position of
particle ¢, W is the SPH kernel function and r is the kernel
radius. Intuitively, projecting this constraint to O ensures
that the density at the current time remains consistent with
the initial state. We use the following cubic SPH kernel:

2s(6¢°(¢—1)+1), 0<g<05
W(p,r) =4 251 -), 05<qg<1 (17)
0, otherwise
where ¢ = lIpll The Jacobian of constraint is computed as:

m; .
Z 2V W(pi —pj,7), k=i

Vp Cf =35 (18)
vajw(pi*pjar)v k:]
Po
The gradient of the kernel function is:
28 3¢-2)p, 0<12l <05
Vel (p,r) ={ — 48 Loaly g5 < el <1 (19)
0, otherwise

GSP also includes a position-based surface tension
model [73] to better capture the dynamics of the fluid sur-
face. We first detect whether a particle (i.e., a Gaussian
kernel) is on the fluid surface based on occlusion estima-
tion. Specifically, we encapsulate a particle with a spherical
cover or screen. Each of its neighboring particles generates
a projection on the screen (because a particle has a finite

volume). The particle is considered on the fluid surface if
the total projection area from its neighbors is below a given
threshold.

In the original paper [73], surface detection is imple-
mented on the CPU. It is noteworthy that surface detection
can be parallelized on the GPU to expedite the simulation,
as the calculation of each particle’s occluding ratio on the
screen is independent of the others.

For each neighboring par-
ticle, its occluding area on the
spherical screen is calculated
as follows:

@ q\/ G

&
Ap P’ “V G p
6 =tan (——2~ D thS)
(p. o+ ap?) @
A
¢ =tan" (2P2) (20
Ap. Figure 12. Detection of
Af — tan-! R surface particles. An in-
= tan |Ap||2 — R2 terior particle is detected if
Ad = AB its screen is widely shad-

owed by its neighbors. A
boundary particle is de-
tected if at least one part of
the particle’s screen is not
shadowed.

where Ap is the vector from
the detection particle to the
neighboring particle and R is
the particle radius. The shad-
owed area on the spherical screen is then [0 — A, 0+ Af] x
[0 —A¢, d+ A¢]. We parameterize the screen as an 18 x 36
environment map, with each column of the environment
map corresponding to 18 bits of an integer. We then mask
36 integers and count the mask ratio.

After detecting surface particles on the fluid, we apply
tension on the surface. Tensions tends to minimize surface
area. Therefore, PBF applies an area constraint to each sur-
face particle to minimize the local surface area nearby. We
start by calculating the normal n; of surface particles ¢ as:

n; = normalize(—V, C?), (21)

where C = 0 indicates the particle is inside the fluid, and
C? = —1 indicates it is outside. After that, we project the
neighboring surface particles onto a plane perpendicular to
n,; and triangularize the plane. The area constraint can then
be built as:

1
CzA = Z 5 H(pt2 *ptl) X (pt3 7pt1)H (22)
teT (i)

where T'(7) is the set of neighboring triangles for particle
1. We use the 2D Delaunay triangulation to construct the
triangles on the local surface. This process is sequential
and cannot be parallelized on the GPU. However, it is suffi-
ciently fast and we translate it from CPU to GPU.

Figure 13. Different sampling strategies. We compare the re-
sults of different sampling strategies: (left) fill the particle based
on the density grid calculated using Gaussian kernels [72], and
(right) uniformly sample within NeuS reconstruction. The point
distribution generated by vanilla 3DGS is uneven, which hardly
samples the legs or seat of the chair.

To promote a more uniform particle distribution, addi-
tional distance constraints are introduced to push apart par-
ticles that are too close to each other:

Cl =min{0,||p; — p;|l — do} . (23)

where dj is the distance threshold. The Jacobian of aboved
constraints are:

(P2 — D) X (Ps — Pp1) X (D3 — Py2)

\V4 ICA p)—=)
O ®) = S (e =) % (P — bl
thCtA(p) _ (Pi3 — Pi2) X (P — Pi2) X (P —PtS)7
2{[(pss — pi2) X (P — P2 ||
VﬁCtA(p) _ (P — Pi3) X (P2 — Py3) X (Pe2 —ptl)7
2[[(pir — pis) X (P2 — pys) ||
D Oa sz _p]” > d()a
vicij (p) = PP Others.
|pi — pjll
5 0, i — ;| > do,
vjcij (p) = bj —Di . Others.
Ipi — pjll

24)

8. Sampling and interpolation details

In practice, we found that an uneven distribution of Gaus-
sian kernels results in unstable and inaccurate motion syn-
thesis, while a distribution that is too uniform can detri-
mentally affect rendering quality. Gaussian kernels tend
to distribute primarily unevenly around the surfaces and
edges of objects, leading to inaccurate boundary descrip-
tions, which are crucial for interactions between objects in
simulation. Conversely, adaptively distributed anisotropic
Gaussian kernels are key to representing the spatially vary-
ing texture on the object. To address this issue, we maintain
two separate sets of points: one sampled from the NeuS
mesh surface for simulation, and the other consisting of

trained Gaussian kernels for rendering. We compare the
results of directly sampling from trained Gaussian kernels
to those of sampling from NeuS in Fig. 13. The former
method can result in sparsely sampled regions, especially
for objects with thin parts, potentially affecting simulation
quality.

We then discuss how to animate trained Gaussian kernels
for rendering dynamics. Denote the set of trained Gaus-
sian kernels for rendering as S, and the set of sampled
points from NeuS for simulation as Ss. At time 0, we ini-
tialize GMLS kernels on S and find the k nearest neigh-
bors {pd; : j € N(i)} from S, for each point p,; in
Sy. Here, N(i) denotes the set of k nearest neighboring
particles’ indices of p,; in S, at time 0. As the simula-
tion or motion synthesis proceeds, the position p{ ; evolves
with time step n. We then update p,. ; by interpolating from
{p?, : j € N(i)} with the pre-built GMLS kernel. The
interpolation of deformation is achieved in the same way,
replacing the physical quantity position p to deformation
gradient F.

9. Rendering details

Shadow As shadows are crucial to the visual outcomes in
dynamic scenes, we re-engineer nearly-soft shadows [13]
into our system to enhance realism. Following shadow map-
ping, we splat all Gaussian kernels to a camera positioned
at the point light’s location, which we denote as light-view.
The point light is aligned with the direction of the signifi-
cantly bright light in the environment map. The resolution
of the light-view image is three times that of the original
image resolution to address visual discrepancies caused by
under-sampling.

We then reproject the points seen in the camera view to
the light-view and compare their depths to the previously
splatted light-view depth image. A larger depth indicates
that the point is occluded by a nearer point and will there-
fore cast a shadow. A more robust variance method is dis-
cussed in [13]. Softer shadows can be achieved by blurring
and averaging the light-view depth image. We compute the
shadowing probability using Chebyshev’s inequality [13]
and store the results in a shadow map. Finally, we com-
posite the rendered image with the shadow map to achieve
nearly-soft dynamic shadows.

Spray, foam, and bubble To enhance the realism of flu-
ids, foam, spray and bubble particles are synthesized with
[22] as a post-processing step. Fluid-air mixtures are gen-
erated at the crest of the wave and in the impact zone of the
wave. Spray, foam, and bubble particles are advected by the
fluid and dissipate within their predefined lifetimes.

We splat these particles into a foam intensity image using
modified additive splatting. Different types of particles use
different kernels during splatting [1]. We preferred a larger

overall intensity for surface foam particles to increase their
visibility, while we used a comparatively smaller intensity
value for spray particles to make them less prominent. Fur-
thermore, we used hollow circle structures for the bubble
particles to make their appearance more convincing under-
water. The kernel typically has a radius of 2 pixels. How-
ever, in practice, we found that the kernel radius should be
scaled based on the particle’s depth in the view, as parti-
cles near the camera occupy more of the view compared to
those farther away. Finally, we apply a curve [1] on the
foam intensity image to scale it into [0, 1] and compose it
with rendering.

10. Implementation details

We set the simulation time step as 0.005 seconds throughout
the simulations. In our PBD solver, we used 10 iterations
for fluids and 50 iterations for solids for our experiments,
since mass particles on the solid models are more strongly
coupled than the ones in the fluid. During the PBF simu-
lation, the surface particles of fluids are updated every two
time steps.

11. Comparison with PhysGaussian

PhysGaussian [72] is a recent work that also integrates
physical models into 3DGS. However, its rendering mod-
ule does not support dynamic refraction and reflection, both
of which are essential for fluid rendering. PhysGaussian
employs spherical harmonics for shading, complicating ef-
fective manual editing and preventing the accurate render-
ing of dynamic fluids. In Fig. 14, we present a side-by-side
comparison. In this experiment, we transform the hot dog
on the plate to water and allow it to interact with the sta-
tionary plate. Our approach clearly demonstrates improved
rendering quality for fluids.

12. More results

We show the results of Chair (Fig. 15), Waves (Fig. 8),
Garden (Fig. 16), Lego (Fig. 17), Cup & dog (Fig. 18),
Headset (Fig. 19), Can (Fig. 20), Astronaut (Fig. 23), Fi-
cus (Fig. 21), and Bulldozers (Fig. 22). For better visual-
ization, please refer to the supplementary video.

Figure 14. Comparison with PhysGaussian [72]. We compare our method with PhysGaussian [72] for fluid editing and rendering. The
first row presents our results, while the second row shows those of PhysGaussian. In this experiment, we transform a hot dog placed on
a plate into fluid, allowing it to interact dynamically with the stationary plate. PhysGaussian struggles to render realistic fluid effects,
whereas our method effectively renders fluid and accurately captures water highlights, yielding significantly more realistic results.

Figure 15. Chair. A soft chair falls into the pool, causing deformation and ripples.

Figure 16. Flooding garden. Water leaks into the garden and submerge the table. As the water level goes up, the surface gets more vibrant
and washes the potted plant away.

Figure 17. Splashing LEGO. Through the two-way coupling dynamics, the LEGO bulldozer is animated to surf on the splashing waves.

Figure 18. “Everything is water”. Pouring water into the paper cup on the table and transforming the cup and the dog toy into water. The
water spills out.

Figure 19. Headset waterfall. Water flows from a headset hanging above an office desk, resembling a faucet. Due to surface tension, the
water forms droplets as it falls, sliding down the computer screen and splashing onto the desk, creating a puddle.

Figure 20. Water droplets on can. Droplets of water fall onto the surface of a soda can, coalesce due to surface tension and gradually
overflow.

Figure 21. Deformable ficus. A deformable ficus plant undergoes continuous shape changes as it is dragged and manipulated by external
forces.

Figure 22. LEGO bulldozers in glass bowl. A collection of LEGO bulldozer rigid bodies fall into a round glass box, colliding with each
other. They cast shadow on the ground and eventually stack and scatter throughout the box.

Figure 23. Black magic. An astronaut in space strucked by the black magic of the Trisolarans, and get transformed into a water sphere.

