Linear Attention Modeling for Learned Image Compression

Supplementary Material

A. Performance Details

This section provides additional details regarding the results
presented in Table 1.

The rate-distortion (R-D) results can vary across differ-
ent VIM anchors due to different evaluation process. To
provide a generally accepted baseline on Kodak, we adopt
the R-D results from the CompressAl repository [5], which
are collected from VIM-9.1. For other datasets, we use
the following script to evaluate images in YUV space using
VTM-9.1, where QPs range from 22, 27, 32, 37,42, 47.

VTM/bin/EncoderAppStatic —i [input.yuv]
-c VIM/cfg/encoder_intra_vtm.cfg
-o [output.yuv] -b [output.bin]
-wdt [width] -hgt [height] —-g [QP]
——InputBitDepth=8 —-fr 1 -f 1
——InputChromaFormat=444

Regarding runtime, FAT is reported to have a decod-
ing time of 242 ms; however, our tests indicate a signif-
icantly longer decoding time of 426 seconds. This dis-
crepancy remains an unresolved issue documented in its
GitHub repository. Based on our analysis, decoding a single
slice with FAT’s T-CA entropy model involves computing
masked channel attention across 12 layers, whereas TCM
requires only two layers for decoding each slice. Incor-
porating techniques such as KV caching could potentially
reduce the FLOPs required for each slice during decoding.
Furthermore, the authors have acknowledged that the en-
tropy coder in FAT requires additional optimization to im-
prove decoding efficiency.

For complexity measurements, we use the thop Python
package to calculate parameters and FLOPs, ensuring con-
sistency with the methodology employed for TCM [19].
However, thop has known limitations: it cannot account for
FLOPs arising from non-layer-specific operations such as
mathematical functions, matrix multiplications (e.g., in at-
tention mechanisms), or CUDA-specific implementations.
While the majority of FLOPs originate from Torch inte-
grated layers, the values reported in Table | provide a rea-
sonable and fair reference for comparison.

B. Additional Experiment Results

This section presents additional experimental results com-
paring our method with recent learned image compression
(LIC) approaches. We present the BD-rate (MS-SSIM) re-
sults in Table 4, with VTM-9.1 as anchor. In fact, only a
few recent works have publicly available MS-SSIM opti-

Method Kodak CLIC  Tecnick
VTM-9.1 0.00% 0.00% 0.00%
ELIC -7.57% - -
TCM-large -49.76% - -
MLIC++ -52.99% -47.43% -53.14%
FAT -51.64% - -
LALIC (Ours) -51.23% -46.97% -49.47%

Table 4. BD-rate (MS-SSIM) performance relative to VTM-9.1
across different datasets. - indicates an unavailable result.

mized models or corresponding curves on Tecnick/CLIC,
resulting in some missing results.

C. Linear Attention Mechanisms

Except the vanilla Attention which has a quadratic complex-
ity, common modules have a linear complexity, including
convolution, window-based attention. The recent linear at-
tention methods, RWKYV and Mamba are widely recognized
for their efficiency in handling large-scale sequences to get
a global reception filed, and also maintains the linear com-
plexity with respect to the input size.

To provide a clearer comparison of these methods, Ta-
ble 5 summarizes the theoretical time complexity of various
attention mechanisms and the typical values of their number
of operations (#OPs).

Methods Time Complexity #OPs
AFT [42] 7LD 7LD
AFT+Shift 7LD + 50LD S5TLD
BiWKV+Shift 29LD + 50LD 79LD
Window Attention [21] 2w?LD (w=28) 128LD
Selective Scan [12] ONLD (N =16) 144LD
Selective Scan 2D [20] 4 x 9NLD (N =16) 576LD

Table 5. Theoretical time complexity of various attention mecha-
nisms in terms of number of operations (#OPs).

In all cases, the computational cost is directly propor-
tional to L - D, where L represents the sequence length, and
D denotes the latent dimension. The theoretical FLOPs for
various mechanisms are outlined below:

* AFT+Shift: The complexity of the AFT (named AFT-
simple in [42]) is estimated as 7LD by the torch-
operation-counter package. Adding the 5x5 depth-wise
convolution shift operation (25LD x 2 for both spatial
and channel mix modules) increases the total complexity
to 57LD.



e BiWKV+Shift: The BiWKV [9] mechanism, computed
as 29LD according to the Vision-RWKYV GitHub reposi-
tory, combined with the shift operation results in 79LD.

¢ Window Attention: The window attention [21] mecha-
nism has a complexity of 2w? LD, where w is the window
size, typically set to 8, resulting in 128LD.

¢ Selective Scan: In Mamba [12], the selective scan mech-
anism has a complexity of 9N LD, where N is the state
dimension, typically set to 16, leading to 144LD. In
SS2D [20], the selective scan is performed four times, re-
sulting in a total complexity of 4 x ONLD = 576LD.

As shown in Table 5, BIWKV attention demonstrates
significant computational efficiency compared to these
other mechanisms, making it a compelling choice for bal-
ancing performance and complexity.

D. Linear Complexity on Scaling

Practical learned image compression (LIC) methods exhibit
linear complexity with respect to the number of pixels, as
shown in Figure 10. Unlike previous demonstrations [16]
that used a quadratic x-axis and presented a quadratic trend
for all methods, this figure employs a linear x-axis for clar-
ity, providing a more intuitive understanding for readers.
The maximum resolution tested is 1024 x 1024.

Among recent LIC methods, our proposed LALIC
demonstrates medium-low FLOPs and forward GPU mem-
ory usage, striking a balance between computational effi-
ciency and memory requirements.

E. Entropy Model Architecture

For entropy models, we adopt the Conv SCCTX model [14]
and an enhanced Conv Plus SCCTX configuration as refer-
ence baselines. The detailed network architectures of these
models are illustrated in Figure 11.

The Conv SCCTX model consists of three 5x5 convo-
lutional (Conv) layers designed to extract channel context,
followed by three 1x1 Conv layers for entropy parameter
estimation. The Conv Plus SCCTX configuration extends
this architecture by incorporating Depth Conv Block (DCB)
from the DCVC[33] learned video coding series, where the
hyperparameter k& denotes the kernel size of the depthwise
convolution. To further enhance the modeling capacity, we
increase the channel dimensions in the depthwise convolu-
tion layers, thereby raising the number of context parame-
ters.

F. Subjective Results

We conducted a subjective comparison of reconstructed im-
ages generated by our LALIC model and our trained TCM-
large model on the Kodak dataset. The results are shown in
Figure 12 and Figure 13. By focusing on specific image re-
gions, we observe that our proposed method preserves finer
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Figure 10. Linear scaling trends of FLOPs (a) and GPU memory
usage (b) for different LIC methods as a function of image resolu-
tion. LALIC achieves competitive performance with medium-low
computational and memory demands.
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Figure 11. Network architecture of Conv SCCTX and Conv Plus
SCCTX configurations. The upper module represents channel

context extraction, while the lower module corresponds to param-
eter aggregation.

details compared to TCM-large. For instance, LALIC re-
tains sharper textures in the wooden board on the right side



(d) Original crop (e) TCM-large crop (f) LALIC (Ours) crop

Figure 12. Subjective quality comparison on the kodim01 image from Kodak.

(a) Original (b) TCM-large 0.245 bpp / 34.20 dB (¢) LALIC (Ours) 0.243 bpp / 34.30 dB

(d) Original crop (e) TCM-large crop (f) LALIC (Ours) crop

Figure 13. Subjective quality comparison on the kodim02 image from Kodak.

of Figure 12 and captures the intricate structure of the door
handle in Figure 13.

In addition to qualitative improvements, our method
achieves higher PSNR values while maintaining a lower bi-
trate, highlighting its superior rate-distortion performance
over TCM-large.



