
A. Universality of WAVE
Proposition 1. Heur-LG [36], Auto-LG [37] and

TLEG [40] are special cases of WAVE.

Proof. To prove Proposition 1, we establish a correspon-
dence between weight templates and ViT layers since the
learngenes in Heur-LG, Auto-LG and TLEG are structured
in the form of ViT layers.

Consider the set of weight templates:

T = {T (1⊋Nqkv)
qkv , T (1⊋No)

o , T (1⊋Nin)
in , T (1⊋Nout

out )}

These templates can be used to construct Nl learngene
layers in a ViT model:

G = {G(1⊋Nl)
qkv , G(1⊋Nl)

o , G(1⊋Nl)
in , G(1⊋Nl)

out }

via the following operation:

G(l)
ω =

s1s2∑

t=1

T (s1s2·(l→1)+t)
ω → 1̊(i,j) (A.1)

where G(l)
ω ↑ RM1↑M2 is the constructed weight matrix for

the l-th layer of type ω. T (t)
ω ↑ Rw1↑w2 is the t-th weight

template of type ω, where ω ↑ {qkv, o, in, out}. 1̊(i,j) ↑
Rs1↑s2 is a padding matrix with 1 at position (i, j) and 0
elsewhere, where s1 = M1

w1
and s2 = M2

w2
.

The indices i and j in 1̊(i,j) are calculated as follows:

i = ↓ t↔ 1

s2
↗, j = (t↔ 1) mod s2 (A.2)

Now, consider a ViT model with Ltar layers whose
weight matrices are

εtar = {W (1⊋Ltar)
qkv ,W (1⊋Ltar)

o ,W (1⊋Ltar)
in ,W (1⊋Ltar)

out }

We will demonstrate how Heur-LG, Auto-LG, and
TLEG can be represented as special cases of WAVE:
• Heur-LG extracts the last Nl layers from a pre-trained

model and then stacks randomly initialized layers Rω in
the lower layers to construct target models:

W (l)
ω =

{
R(l)

ω l < Ltar ↔Nl

G(Nl+l→Ltar)
ω l ↘ Ltar ↔Nl

(A.3)

• Auto-LG extracts the first Nl layers from a pre-trained
model and then stacks randomly initialized layers Rω in
the higher layers to construct target models:

W (l)
ω =

{
G(l)

ω l ≃ Nl

R(l)
ω l > Nl

(A.4)

• TLEG adopts linear expansion on two shared learngene
layers G(A)

ω and G(B)
ω :

W (l)
ω = G(A)

ω +
l

Ltar
G(B)

ω (A.5)

Algorithm 1 Integration of Structured Size-agnostic
Knowledge into Weight Templates
Input: Training dataset {(x(i), y(i))}mi=1, number of epochs Nep,
batch size B, learning rate ω, pre-trained model (i.e., ancestry
model) fpre, auxiliary model faux with weight matrices εaux

Output: Weight Templates T
1: Randomly initialize weight matrices εaux, weight templates T

and weight scalers S
2: for ep = 1 to Nep do
3: for each batch {(xi, yi)}Bi=1 do
4: Update εaux with T and S under the rule of Eq. (4)
5: For each xi, forward propagate ŷi = faux(xi)
6: Calculate Lbatch = 1

B

∑B
i=1 L(ŷi, yi)

7: Backward propagate L(ŷi, yi) to compute the gradients
with respect to T and S: →T Lbatch,→SLbatch

8: Update T and S :
T := T ↑ ω ·→T Lbatch

S := S ↑ ω ·→SLbatch

9: end for
10: end for

The above formulations demonstrate that Heur-LG,
Auto-LG, and TLEG are all specific cases of WAVE, where
different rules are applied to concatenate and weight these
templates in T .

B. Initialization of Weight Scalers
For the initialization of S , we simulate linear initializa-
tion [40] and Net2Net [5], and propose linear padding ini-
tialization to better preserve the structured knowledge of
original weight templates during initialization, thereby pro-
viding a suitable starting point for target networks.

For a target network with Ltar layers, we consider its
weight matrix W (l)

ω ↑ RM1↑M2 and corresponding weight
templates T (1⊋Nω)

ω ↑ Rw1↑w2 , where M1 > w1 and
M2 > w2. The corresponding S(l,t)

ω ↑ Rs1↑s2 is initial-
ized as:

S(l,t)
ω = ϑt · 1̊(i,j) + ϖN (µ,ϱ2) (B.1)

Here, ϑt =

{
1, if t ≃ Nω

2
l

Ltar
, otherwise

is a linear weight and

1̊(i,j) ↑ Rs1↑s2 is a padding matrix with 1 at (i, j)
and 0 elsewhere. The indices (i, j) are given by i =

↓ (t→1) mod (s1↑s2)
s2

↗, j = (t ↔ 1) mod s2 with si =
Mi
wi

. ϖ
denotes a small value (e.g., 10→6) and N (µ,ϱ2) represents
Gaussian noise.

C. Training Details
C.1. Details of Knowledge Integration
Algorithm 1 presents the pseudo code for integrating struc-
tured size-agnostic knowledge into weight templates (i.e.,



Table C.1. Hyper-parameters for WAVE integrating structured
knowledge on ImageNet-1K.

Training Settings Configuration
optimizer AdamW
base learning rate Ti: 5e-4 | S: 2.5e-4 | B: 1.25e-4
warmup learning rate 1e-6
weight decay 0.05
optimizer momentum 0.9
batch size Ti: 512 | S: 256 | B: 128
training epochs 150
learning rate schedule cosine decay
warmup epochs 5
color jitter 0.4
auto augment rand-m9-mstd0.5-inc1
mixup 0.8
cutmix 1.0
label smoothing 0.1
drop path 0.1

learngenes).

C.2. Hyper-parameters
Table C.1 and Table C.4 present the basic settings, includ-
ing batch size, warmup epochs, training epochs and other
settings for WAVE integrating structured common knowl-
edge into weight templates and training the models initial-
ized with weight templates on various datasets, respectively.

C.3. Details of Weight Templates
Table C.2 presents a detailed overview of weight templates
utilized in auxiliary models for integrating structured, size-
agnostic knowledge from the ancestry model.

C.4. Details of Downstream Datasets
Additional datasets include Oxford Flowers [24], CUB-
200-2011 [34], Stanford Cars [11], CIFAR-10, CIFAR-
100 [19], Food-101 [3], and iNaturalist-2019 [29]. Ta-
ble C.3 presents the details of seven downstream datasets,
which are sorted by the size of datasets.

D. Additional Results
D.1. Integration of Knowledge from Larger Pre-

trained Models
Weight templates enable structured integration of knowl-
edge from pre-trained ancestor models while filtering out
size-specific information that violates the constraints in
Eq. (4). This mechanism ensures effective transfer and shar-
ing of size-agnostic knowledge across models of varying
sizes.

To evaluate the influence of ancestor models with dif-
ferent architectures and sizes, we incorporate a larger pre-
trained model, RegNet-16GF (83.6M) [25], and compare it

Table C.2. Configuration of weight templates. l ↓ w @ n repre-
sents that the weight templates of corresponding weight matrices
are composed of n templates with the size l ↓ w.

DeiT-Ti DeiT-S DeiT-B
Wqkv 192⇐192 @ 6 384⇐384 @ 6 768⇐768 @ 6
Wo 192⇐192 @ 2 384⇐384 @ 2 768⇐768 @ 2
Win 192⇐192 @ 8 384⇐384 @ 8 768⇐768 @ 8
Wout 192⇐192 @ 8 384⇐384 @ 8 768⇐768 @ 8
Wnorm1 192 @ 4 384 @ 4 768 @ 4
Wnorm2 192 @ 4 384 @ 4 768 @ 4
W (bias)

qkv 576 @ 4 1152 @ 4 2304 @ 4
W (bias)

o 192 @ 4 384 @ 4 768 @ 4
W (bias)

in 768 @ 4 1536 @ 4 3702 @ 4
W (bias)

out 192 @ 4 384 @ 4 768 @ 4
W (bias)

norm1 192 @ 4 384 @ 4 768 @ 4
W (bias)

norm2 192 @ 4 384 @ 4 768 @ 4
Wirpeq 1⇐64⇐49 @ 6 1⇐64⇐49 @ 6 1⇐64⇐49 @ 6
Wirpek 1⇐64⇐49 @ 6 1⇐64⇐49 @ 6 1⇐64⇐49 @ 6
Wirpev 1⇐49⇐64 @ 6 1⇐49⇐64 @ 6 1⇐49⇐64 @ 6

Table C.3. Characteristics of downstream datasets.

Dataset Classes Total Training Testing
Oxford Flowers [24] 102 8,189 2,040 6,149
CUB-200-2011 [34] 200 11,788 5,994 5,794
Stanford Cars [11] 196 16,185 8,144 8,041
CIFAR10 [19] 10 60,000 50,000 10,000
CIFAR100 [19] 100 60,000 50,000 10,000
Food101 [3] 101 101,000 75,750 25,250
iNat-2019 [29] 1010 268,243 265,213 3,030

with WAVE and TLEG, both using LeVit-384 (39.1M) as
the ancestor model. Table D.1 presents the results on DeiT-
Ti and DeiT-S across various layers.

The results demonstrate that WAVE consistently outper-
forms TLEG across all model sizes. While the larger an-
cestor model (RegNet-16GF) provides some improvements,
the gains remain limited, suggesting that once a pre-trained
model is sufficiently trained and informative, the shared
size-agnostic knowledge remains stable. These findings un-
derscore WAVE’s robustness in effectively condensing and
integrating knowledge from diverse ancestor models.

D.2. Initialization of Deeper Models
We extend our experiments (Table 1) to deeper models with
24 and 36 layers across different widths (W192, W384, and
W768). Table D.2 shows that WAVE consistently outper-
forms He-Init [6] and TLEG [40], achieving higher accu-
racy across all settings.

For 24-layer models, WAVE surpasses TLEG by 0.8%,
0.7%, and 1.8%, with even greater improvements at 36
layers, confirming its effectiveness in deeper architectures.
These results demonstrate WAVE’s ability to maintain ini-
tialization quality as model depth increases, leveraging size-
agnostic weight templates to ensure stable parameter inher-



Table C.4. Hyper-parameters for neural networks trained on downstream datasets.

Dataset Batch
Size Epoch Learning

Rate
Drop
Last

Warmup
Epochs

Droppath
Rate

Color
Jitter

Auto
Augment

Random
Rrase Mixup Cutmix Scheduler Optimizer

Oxford Flowers 512 300 3e-4 False 0 0 0.4

ra
nd

-m
9-

m
st

d0
.5

-in
c1 0.25 0 0 cosine AdamW

CUB-200-2011 512 300 3e-4 False 0 0.1 0 0.25 0 0 cosine AdamW
Stanford Cars 512 300 3e-4 False 0 0.1 0 0.25 0 0 cosine AdamW
CIFAR10 512 300 5e-4 True 0 0.1 0.4 0.25 0 0 cosine AdamW
CIFAR100 512 300 5e-4 True 0 0.1 0.4 0.25 0 0 cosine AdamW
Food101 512 300 5e-4 True 0 0.1 0.4 0.25 0 0 cosine AdamW
iNat-2019 512 100 5e-4 True 0 0.1 0.4 0.25 0 0 cosine AdamW

Table D.1. Additional results on different ancestry models.

DeiT-Ti DeiT-S
Ancestry L4 L8 L12 L4 L8 L12

TLEG [40] LeVit-384 (39.1M) 55.0 62.9 65.4 65.4 72.1 73.8
WAVE LeVit-384 (39.1M) 58.6↓ 65.4↓ 67.3 68.9 74.1 75.3↓
WAVE RegNet-16GF (83.6M) 58.7 65.7 67.0↓ 68.7↓ 74.0↓ 75.4

Table D.2. Results on initializing deeper models.

W192 W384 W768

L24 L36 L24 L36 L24 L36

Epoch Para. 11.3 16.7 Para. 43.6 65.0 Para. 171.8 257.0

He-Init [6] 0 0 52.4 53.6 0 57.8 58.2 0 59.2 59.4
TLEG [40] 150 1.3 68.1 68.7 4.3 74.8 75.3 15.7 77.6 77.5
WAVE 150 1.3 68.9 69.5 4.4 75.5 76.6 15.8 79.4 79.6

⇒0.8 ⇒0.8 ⇒0.7 ⇒1.3 ⇒1.8 ⇒2.1

itance and robust generalization across variable depths and
widths. This scalability establishes WAVE as an efficient
initialization strategy for large-scale models.

E. Additional Analysis
E.1. Instincts
Instincts are natural abilities in organisms, brought by
genes, that enable quick adaptation to environments with
minimal or even no interaction [28]. GRL [9] first de-
fines instincts in RL agents, showing that newborn agents
can move toward rewards unconsciously. ECO [10] further
extends this definition to supervised learning, demonstrat-
ing that networks can quickly classify images with minimal
gradient descents, even with a substantial proportion of ran-
domly initialized neurons.

Following the definition of instincts in ECO [10], we
demonstrate that weight templates, as a new form of the
learngene, provide neural networks with strong instincts.
As shown in Figure E.1, WAVE exhibits stronger initial
classification ability compared to other learngenes (includ-
ing Heur-LG, Auto-LG, TLEG), even after just one epoch
of training. This is attributed to the structured size-agnostic
knowledge encapsulated in WAVE’s weight templates.

E.2. Strong Learning Ability
Just as biological instincts enhance learning abilities in or-
ganisms, the learning abilities of neural networks are also
enhanced by the instincts brought by learngenes.

Figure E.1 records the classification accuracy of differ-
ent learngene methods (10 epochs) and models trained from
scratch (150 epochs). We can see that WAVE outperforms
other learngenes (including Heur-LG, Auto-LG and TLEG)
and significantly improves training efficiency.

Compared with the networks trained from scratch, the
WAVE-initialized neural networks achieve comparable per-
formance to the neural networks trained from scratch with
150 epochs even after only one epoch of training. Taking
the DeiT (-Ti, S and B) of 12 layers as an example, the
WAVE reduces the training costs around 11⇐ compared to
training from scratch, and such training efficiency is more
pronounced in smaller models (37.5⇐ in DeiT-Ti L4).

Such strong learning ability is also evident in models ini-
tialized by WAVE on downstream datasets. We visualize the
curve of training loss on small and medium datasets (i.e.,
Oxford Flowers, CUB-200-2011, Stanford Cars, CIFAR-10
and CIFAR-100). As shown in Figure E.2, the models ini-
tialized by WAVE show faster loss reduction, indicating en-
hanced learning ability in downstream datasets.
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Figure E.1. Performance comparisons on ImageNet-1K among WAVE and other learngene methods.
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Figure E.2. Performance comparisons on small and medium downstream datasets among WAVE and other learngene methods.
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