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1. Extended Cambridge Landmarks Dataset
1.1. Data Generation
The Extended Cambridge Landmarks (ECL) dataset aug-
ments the Cambridge Landmarks [3] benchmark with syn-
thetic seasonal and lighting variations using InstructPix2Pix
[2]. By applying an adjusted guidance scale and customized
prompts, the generated query images extend the original
test scenes with three distinct variations: Summer, Winter,
and Evening. Each variation introduces expected environ-
mental modifications; for instance, in the Winter setting,
roads and pavements are partially covered with snow, while
in the Evening setting, streetlights are illuminated, and the
sky appears darker. Visual samples of the ECL dataset can
be found in the supplementary materials. Figure 1 shows
samples from each scene in the extended dataset. Quan-
titative pose regression analysis between these more chal-
lenging conditions and unmodified sequences helps scien-
tifically assess model adaptability.

1.2. Results
To assess the robustness improvement from integrating a
hypernetwork into the Baseline APR, we compare model
accuracy on the ECL dataset. Consistent with Table 2 in
the main paper, Table 1 reports results on the Extended
Cambridge Landmarks (ECL) dataset without retraining
or fine-tuning (models originally trained on the Cambridge
Landmarks dataset). Notably, the Baseline APR w/ hyper-
net results in the original column of Table 1 align with those
in Table 2 of the main paper. As shown, hypernetwork-
enhanced models consistently outperform the original, ex-
hibiting lower deviation in pose estimation error compared
to the Baseline APR.

2. Oxford RobotCar Dataset
2.1. Datasets Split
This expansive outdoor corpus captures over 100 traversals
of a consistent route, that exhibits substantial appearance

variations. These are induced by changes in weather, traf-
fic patterns, pedestrian activity, and longitudinal alterations
such as construction.

Our experiments utilize two subsets from the Oxford
RobotCar Dataset denoted LOOP and FULL, following the
training and evaluation protocols introduced in [1, 9]. The
LOOP scene encompasses 1120 meters total, while the
FULL scene spans a total distance of 9562 meters. Table
2 details the training and testing sequences of the Oxford
RobotCar dataset and their attributes.

2.2. Results Trajectories
Figure 2 depicts the predicted trajectories of the AtLoc ar-
chitecture [9], MapNet [1] and the suggested method evalu-
ated in the Oxford RobotCar scenes LOOP1 (top), LOOP2
(middle), and FULL1 (bottom).

3. Training Details
We adopt the three-phase training procedure introduced in
[6]. In the first phase, all network components are trained
simultaneously. In the second phase, only the translation-
related layers are fine-tuned, including the hypernetwork
and regression layers, while other parts of the network re-
main frozen. In the final phase, the orientation-related
components are fine-tuned to improve performance with-
out compromising the localization objectives. Specifically,
during the first optimization phase, we set the internal loss
parameters Sx and Sq to -3 and -6.5, respectively, for the
Cambridge outdoor dataset and 0.0 and 0.0 for the 7 Scenes
indoor dataset. In the second and third phases, we set the
optimized parameters to 1.0 and 0.0.

We used the Adam optimizer with β1 = 0.9, β2 = 0.999,
and ϵ = 10−10. The initial values of the loss parameters are
set based on the characteristics of each dataset. The batch
size was 8, and the initial learning rate was λ = 10−4.
For single-scene models, the learning rate is reduced by
25% every 20 epochs for indoor localization and every 200
epochs for outdoor localization, with maxima of 100 and
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Figure 1. Samples from the proposed Extended Cambridge Landmarks (ECL) Dataset.

Table 1. Comparative analysis of the Baseline APR architecture with and without the proposed hypernetwork using the Extended
Cambridge Landmarks (ECL) dataset: We report the median position/orientation error in meters/degrees. Bold marks the best perfor-
mance.

Scene Method Flavor

original winter summer evening

K. College
Baseline APR 0.89, 2.29 0.94, 2.14 1.03, 2.12 1.15, 2.59
Baseline APR w/ hypernet 0.61, 1.84 0.67, 2.03 0.69, 1.93 0.70, 2.52

Old Hospital
Baseline APR 1.49, 3.30 1.84, 3.72 1.53, 3.77 2.03, 3.43
Baseline APR w/ hypernet 1.44, 3.03 1.39, 3.15 1.39, 3.36 1.77, 3.40

Shop Facade
Baseline APR 0.74, 4.79 0.74, 5.06 0.76, 4.90 1.04, 4.99
Baseline APR w/ hypernet 0.70, 3.62 0.71, 4.26 0.75, 4.08 0.88, 4.90

St. Mary
Baseline APR 1.40, 4.95 1.50, 5.26 1.52, 5.45 1.63, 5.55
Baseline APR w/ hypernet 1.37, 4.85 1.37, 5.07 1.48, 5.35 1.53, 5.34

600 epochs, respectively. For multi-scene models, due to
the large number of samples comprising all dataset scenes,
we apply a 25% learning rate reduction every 10 epochs
for indoor localization and every 200 epochs for outdoor
localization, with maxima of 30 and 600 epochs, respec-
tively. Additionally, a weight decay of 10−4 and a dropout
of p = 0.1 are applied to the Transformers during training.

To improve the model’s generalization, we applied aug-
mentation in line with [3]. During training, the image is
resized so that its smaller edge is resized to 256 pixels and a

random 224×224 crop is taken. For the Cambridge dataset,
we also apply random adjustments to the brightness, con-
trast, and saturation of the image. During testing, the image
is rescaled so that the smaller edge is resized to 256 pixels,
and a center crop is taken without any further augmentation.

The models were trained on a single NVIDIA 2080Ti
GPU and the PyTorch framework [5]. The training time for
a single-scene model ranges from 0.5 to 4 hours, depending
on the size of the selected scene. Multi-scene model train-
ing requires approximately 12 hours for the indoor dataset
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Figure 2. The LOOP1 (top), LOOP2 (middle) and FULL1 (bottom) trajectories of the Oxford RobotCar dataset. The ground truth
trajectories are illustrated by black lines. Red lines show the corresponding predictions, where stars denote the starting points in each
trajectory.

Table 2. The Oxford RoborCar testing and training sequences.

Sequence Time Tag Mode

2014-06-26-08-53-56 overcast Training
2014-06-26-09-24-58 overcast Training

LOOP1 2014-06-23-15-41-25 sunny Testing
LOOP2 2014-06-23-15-36-04 sunny Testing

2014-11-28-12-07-13 overcast Training
2014-12-02-15-30-08 overcast Training

FULL1 2014-12-09-13-21-02 overcast Testing
FULL2 2014-12-12-10-45-15 overcast Testing

and 24 hours for the outdoor dataset. We select the optimal
epoch for the final trained model based on an evaluation of
the overall performance for both position and orientation
estimation errors.

4. Ablation Study

Due to the significant volume of required experiments, we
compare the architecture variations after the first training
stage (see Section 3), rather than after the full training.
Hence, the reported estimation errors may differ from those
in Tables 1, 2, 3, 4 and 5 in the main paper, which reflect
full training.

MS-HyperPose Inputs. We evaluated the impact of
the input configuration on the performance of the MS-
HyperPose architecture. As depicted in Fig. 2 in the main
paper, the hypernetwork input for each branch consists of a
summation of the embedded activation maps from the CNN
backbone and the output of the branch’s Transformer. Table
3 compares the overall performance of the model with dif-
ferent input configurations using the Cambridge landmarks
dataset. We note that incorporating the backbone embed-
ding improves both positional and rotational errors.

Residual hypernetwork output. Table 4 shows the re-



Table 3. Ablations MS-Hyperpose inputs. We report the me-
dian position and orientation errors on the Cambridge Landmarks
dataset.

Input Position Orientation
[meters] [degrees]

Transformers tokens 1.34 2.52
Backbone embedding
+ Transformers tokens 1.33 2.41

gression results of the absolute pose versus the residual out-
puts in the hypernetwork branches. This analysis supports
using residual position and orientation outputs, as depicted
in Fig. 2 in the main paper. In the integrated layer methods,
the regressed pose of the hypernetwork weights is added to
the main network regression output after each layer. Such
that the next layer sums up the previous main network layer
and the corresponding hypernetwork outputs. In the resid-
ual approach, only the final output of the main network and
hypernetwork regression head are summed to obtain the fi-
nal pose estimate. The residual-based architecture outper-
forms integrated approaches, achieving lower errors in both
position and orientation.

Table 4. Ablation study of the network residual architecture. We
report the overall median position and orientation errors on the
Cambridge Landmarks dataset.

Hypernetwork infusion Position Orientation
method [meters] [degrees]

Single integrated hyper-layer 1.40 2.80
Two integrated hyper-layers 1.29 2.76
Residual hyper-layers 1.33 2.41

Hypernetwork embedding dimension. We assess vary-
ing the size of the fully-connected layers in both the posi-
tion and orientation branches of the regression heads in MS-
HyperPose. Table 5 presents multi-scene results obtained
by altering the layer dimensions. We compare the over-
all median position and orientation errors across the Cam-
bridge and 7 Scenes datasets to understand the impact of
embedding size. Notably, modifying one branch’s dimen-
sion impacts the correlated task, as well as the other branch.
For example, reducing the orientation embedding to R256

increases both position and orientation errors. Increasing
the dimensionality to R512 shows a greater improvement in
orientation at the expense of the position accuracy. Table 6
indicates this trend also applies to single-scene APR, sug-
gesting a correlation between the tasks warranting further
exploration.

Table 5. Ablation study of the embedding dimension regressed
by the hypernetworks in the suggested multi-scene MS-HyperPose
architecture. We report the median position and orientation errors
for the Cambridge and 7 Scenes datasets.

Embedding Dimensions Cambridge 7Scenes
θPosition
h /θOrientation

h

256/256 1.40,2.88◦ 0.18,8.17◦

256/512 1.34,2.52◦ 0.18,7.11◦

512/512 1.37,2.38◦ 0.21,6.44◦

Table 6. Ablation study of the proposed single-scene baseline APR
embedding dimension regressed by the hypernetworks. We re-
port the median position and orientation errors on the Red Kitchen
scene in the 7 Scenes datasets.

Embedding Dimensions Position Orientation
θPosition
h /θOrientation

h [meters] [degrees]

256/256 0.18 9.01
256/512 0.17 8.79

256/1024 0.18 9.00

Rotation representations. The authors of [10] contend
that 3D and 4D rotation representations are suboptimal for
network regression, whereas 5D and 6D continuous repre-
sentations are more appropriate for learning. As shown in
Table 7, employing a 4D-based representation in conjunc-
tion with the rotational loss in Eq. 4 in the main paper, led to
the lowest orientational error. In both the Quaternions and
4D-Norm approaches, the rotation regressor generates four
values that estimate the camera’s orientation (quaternion),
but the latter computes the orientation loss based on rota-
tion matrices instead. The results refer to the overall perfor-
mance of the MS-HyperPose architecture on the Cambridge
Landmarks dataset.

Table 7. Ablation of the 3D rotation encoding. We report the
median orientation errors on the Cambridge Landmarks dataset.

Rotation Position Orientation
representation [meters] [degrees]

Quaternions 1.33 2.41
6D [10] 1.40 2.52
9D [10] 1.45 2.62



5. Hypernetwork Output Weights

Given an input query image Iq , hypernetworks generate
weights for the position and orientation regression heads,
allowing adaptation of the network output based on visual
features in the image. The image is likely to exhibit a
range of attributes, such as varying illumination conditions,
different viewpoints, dynamic objects, and changing back-
grounds. Thus, it is expected that the generated weights
will be adapted to accommodate these fluctuations so that
images from the same scene (location) will be jointly clus-
tered despite the appearance variations, as shown in Fig.
3. Figure 3a illustrates the clustering of the Shop Facade
scene test set from the Cambridge Landmarks dataset, based
on the ground-truth translation data. The K-Means algo-
rithm, with (K = 6), was applied, and images were color-
coded according to their assigned clusters. The clusters
were formed based on spatial proximity within the scene’s
coordinate system. Figures 3b and 3c depict the K-Means
clustering (K = 6) of the 2D t-SNE [8] projections of the
backbone’s embeddings generated by the Baseline APR and
HyperPose networks. Notably, the embeddings produced
by HyperPose provide a more coherent visual representa-
tion of the scene compared to those from the Baseline APR.
As shown in Figure 3b, the Baseline APR embeddings are
significantly influenced by variations in lighting conditions,
leading to query images from different locations being pro-
jected close to each other. In contrast, HyperPose demon-
strates improved robustness to lighting variations, preserv-
ing a more accurate spatial representation of the scene.

6. Model Robustness

Figure 4a illustrates the improvement in translation er-
ror between AtLoc and its hypernetwork-enhanced vari-
ation across varying environmental conditions, presented
on the RobotCar’s LOOP scene. While both models
achieve similar performance under simple settings (1,3),
the hypernetwork-based model demonstrates improved ac-
curacy under more difficult conditions of extreme lighting
(4,5), shifted viewpoints (2,5), and unmapped moving ob-
jects (2,4). Figure 5 compares the translation error between
the Baseline and hypernetwork-enhanced models on a se-
quence from the Kings College scene in Cambridge Land-
marks. This example demonstrates the improved robustness
to occlusion of the hypernetwork-based approach. Specif-
ically, when a passing car temporarily obscures the cam-
era’s view, the Baseline error spikes over 10x while the
hypernetwork-based model maintains reasonable accuracy.
Across the datasets, similar analysis consistently reveals
the improved resilience conferred by conditional parameter
modulation.

(a) Clustering by translation

(b) Clustering by Baseline’s embeddings

(c) Clustering by Hyperpose’s embeddings

Figure 3. The clusters of the Shop Facade test set images, that are
part of the Cambridge Landmarks dataset. The clusters are com-
puted using K-Means with K = 4. (a) Clustering of the corre-
sponding camera positions (X, Y). (b) Clustering of the 2D t-SNE
projections of the regression weights computed by the hypernet-
work.
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(a) Positional clusters.

(b) Hypernetworks weights clusters.

Figure 4. Relative translation error of AtLoc [Red] and AtLoc with
hypernet [Blue] on the RobotCar’s ’loop’ scene. Brighter colors
encode higher differences and more significant accuracy improve-
ments. These are shown near the corners, where the appearance
changes significantly between frames of nearby locations.

7. Model Extension and Transfer Learning

In the context of multi-scene pose regression, it is impor-
tant to consider scenarios where the model must adapt to
an additional scene. We assess the advantage of incorporat-
ing a hypernetwork into a multi-scene APR by analyzing its
impact on the transfer-learning required to infer the camera
pose in the new scene. In real-world applications, obtaining
precise ground-truth mapping for a new scene is a complex,
resource-intensive, and costly task. Therefore, we evalu-
ate the model’s performance under conditions where only a
limited amount of data is available for fine-tuning. Figure
6 compares the translation and orientation errors of a se-
lected multi-scene APR model with and without hypernet-
work. Specifically, the comparison focuses on the models’
accuracy after 2-5 epochs of fine-tuning using 5%, 10%,
25%, 50%, and 75% of a new scene’s training data. In
the initial phase, we train a multi-scene model utilizing the
7-Scene dataset while omitting the ”Heads” scene. In the
subsequent phase, we implement a transfer learning proce-
dure, adapting the model with only a subset of the training

data from the ”Heads” scene. As shown in the figure, the
hypernetwork-based model consistently is more accurate
compared to the original model across all data limitations.
Moreover, the hypernetwork-based model achieves compet-
itive pose error using only 25% of the available training
data.

8. Limitations and Future Work
HyperPose improves accuracy for both novel and existing
architectures (e.g. [7], [9]), with minimal impact on infer-
ence time (See Results section in the main paper). However,
the increase in model size is attributed to the high output
dimensionality of the hypernetworks. Specifically, this ex-
pansion arises from the substantial number of parameters
required by the regression layers within the hypernetwork.

A linear layer necessitates Np = (Cin + 1)Cout pa-
rameters. To generate the weights of such layer, a corre-
sponding hypernet outputs requires (Cin + 1)Np parame-
ters. For example, in the case of MS-HyperPose, a layer
that receives and outputs R256 requires Np = 65792 param-
eters. Thus, the layer’s size is ((256+1) ·65792) ·4bytes =
67, 634, 176bytes = 66MB. Therefore, the total memory
size of all six hypernet layers is 66+34+0.5+135+270+
2.1 = 507.6MB

However, the model sizes using HyperPose are reason-
able for the current architectures. Specifically, even this en-
larged multi-scene variant is close to that of the moderately-
sized VGG19 [4].

The observed accuracy improvement isn’t solely related
to the increased model size, as shown in the ablation study
(Supplementary materials). Varying the hypernetwork’s
embedding size and the parameters for 3D rotation pro-
duced larger models, yet meticulous architecture selection
consistently influenced accuracy across experiments. In our
early experiments, we considered a Transformer-Encoder
over the current MLP. Despite a higher parameter count, it
achieved an average performance of 0.87m, 3.43◦ on Cam-
bridge and 0.17m, 9.09◦ on 7Scenes. This highlights that
while enlarging models positively impacts translation accu-
racy, it can compromise orientation accuracy.

Future work will explore exploiting shared position and
orientation weights to reduce the hypernetwork’s size.
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