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Stochastic Deterministic
Q 1 5 10 25 50 100

PVE ↓ 84.08 83.27 83.13 83.09 83.02 83.05 83.10
MPJPE ↓ 70.88 70.29 70.15 70.09 70.04 70.05 69.95
PA-MPJPE ↓ 44.42 43.77 43.66 43.65 43.62 43.61 43.53
Dist. to det. 14.78 9.53 8.56 7.95 7.71 7.61 0.00
SD - 11.61 12.30 12.65 12.79 12.88 -

Table 4. Comparison between deterministic and stochas-
tic generation modes. In stochastic mode, we evaluate the
mean mesh obtained with different sample sizes on 10% of the
3DPW [84] dataset, and we provide its distance to the determinis-
tic prediction (Dist. to det.). We also report the standard deviation
of the predictions. All metrics are in mm.

A. Link between the deterministic and stochas-
tic modes

To gain deeper insights into the stochastic generation mode,
we propose not only evaluating the best sample among the
Q generations (the common practice in the literature), but
also assessing the mean of the generated meshes. In Ap-
pendix A, we compare the performance of the average
prediction for different Q using the standard metrics (re-
fer to Sec. 4.1). Additionally, we compute the Euclidean
distance between the mean mesh and the one obtained in
deterministic mode (Dist. to det., in mm) and the stan-
dard deviation of the predictions averaged over all the ver-
tices (SD, in mm). To reduce the computational costs, this
study is conducted on a randomly selected 10% subset of
images from the 3DPW dataset. Appendix A shows that
as Q increases, the average prediction in stochastic mode
approaches the deterministic prediction, with a distance
around 7 mm for Q = 100. The average prediction ap-
pears to converge toward a favorable solution, slightly out-
performing the deterministic prediction in terms of PVE.

We also examine the distributions of the MPJPE on the
3DPW [84] dataset for MEGA in both deterministic and
stochastic modes across various sample sizes Q. In stochas-
tic mode, we analyze the average and best predictions. The
results are reported in Fig. 5. Notably, the average predic-
tion error of the stochastic mode appears to converge to-
ward the deterministic prediction error, particularly as Q in-
creases; the distributions are very similar, with overlapping
95% confidence intervals. When Q equals 1, the mean per-
formance is comparatively lower, resulting in higher error
values. These observations underscore the importance of
having a deterministic mode for rapid and accurate predic-
tions, which can be considered an estimator of the average
prediction over Q samples.

When selecting the prediction with the minimum er-
ror among N samples, we observe a shift in the distribu-
tion shapes, with errors concentrated toward lower values.
While the highest error values decrease notably, the low-
est remain relatively unchanged. This phenomenon likely
occurs because the lowest errors typically correspond to
meshes that are easier to predict and exhibit lower standard
deviation. Consequently, the stochastic mode proves par-
ticularly beneficial for challenging images, where multiple
predictions offer valuable insights.

B. Experimental details

Pre-training stage. As detailed in the main body, the pre-
training stage is done on a subset of AMASS [62], as intro-
duced in [7]. We pre-train MEGA for 500 epochs, a task
accomplished in less than a day on 4 A100 GPUs. MEGA
is trained using the AdamW optimizer [60] with a cosine
scheduler to adjust the learning rate. The base learning rate
is 1e − 3, and we have a warmup of 20 epochs. The opti-
mizer’s parameters are β1 = 0.9, β2 = 0.99, and the weight
decay is 0.05.
Supervised training stage. The supervised training stage
is done on a mix of standard datasets for HMR as presented
in Sec. 4.1. We first train MEGA on MSCOCO [56] for
100 epochs and then train on the whole training set for 10
epochs. Each step takes about 1 day on 4 A100 GPUs. The
training settings are exactly the same as the pre-training
regarding learning rates and schedulers. For each training
step, we start at epoch 0. Note that we have a lower learn-
ing rate in practice for the training on the mix of datasets
because we stop the training before finishing the warm-up
period. For training with HRNet and ResNet-50 backbones,
the weights of the backbone are fine-tuned with the same
settings as the other parameters of MEGA. When using ViT,
the backbone is frozen during the training on MSCOCO,
and we only fine-tune the last 10 blocks when training on
standard datasets for computing power reasons.
HMR. For recovering human meshes from images in deter-
ministic mode, we predict all images in a single step without
randomness. In stochastic mode, we have to set the num-
ber of steps for generating the sequence of human mesh to-
kens and the amount of noise injected for the Gumble-max
sampling. Note that we did not test MEGA with a ViT in
stochastic mode. With HRNet, we generate meshes in 5
steps, and the initial noise temperature is 1. The generation
process with ResNet-50 is made in 2 steps, and the initial
noise temperature is fixed to 10. The amount of noise at
step t is A × (1 − t

T ) where A is the initial noise tempera-



Figure 5. Error distribution. We visualize the distribution of the MPJPE in mm on the 3DPW dataset.

ture [9, 10].
Random meshes generation. We generate random meshes
in 20 steps (see next section for more details). We want
the generation to be completely random for the first steps
so that the predictions are diverse. However, the last steps
should be almost deterministic to obtain realistic meshes.
The initial noise temperature is A = 1.2, and the amount of
noise at step t is given by (A× (1− t

T ))
6.

Inference time In deterministic mode, with a batch size of
1, a forward pass takes 0.07 seconds with the HRNet ver-
sion of MEGA on a GeForce GTX 1070 GPU. With similar
settings, the ResNet version is real-time (0.03 seconds). In
the stochastic mode, generating a single prediction with the
ResNet model takes 0.04 seconds, which is still real-time,
and generating 16 predictions takes 0.23 seconds.

C. Random meshes generation

We propose to use MEGA pre-trained in a self-supervised
manner (see Sec. 3.3) for generating random human
meshes. For comparison, we assess its capabilities against
VPoser [69] and NRDF [32]. VPoser is a conventional pose
prior in VAE form, while NRDF is a SOTA pose prior based
on neural fields [88]. Although these models do not explic-
itly model body shapes, making them not directly compara-
ble to MEGA, which directly generates meshes with diverse
poses and shapes, they are the most suitable for compari-
son purposes. As far as we know, MEGA is the first model
generating unconditioned random human body meshes with
pose and shape diversity. We assess all 3 models in terms of
diversity using the average pairwise distance (APD) in cm,
representing the average distance between the joints of all

pairs of samples. For plausibility evaluation, we compute
the Fréchet inception distance (FID) with the fully con-
volutional mesh autoencoder introduced in [97] trained on
AMASS [62], with a latent space dimension of 7 × 9. The
FID compares the latent representation of generated meshes
with that of a representative subset of AMASS introduced
in [7].

We randomly sample 500 meshes with each method.
Regarding plausibility, MEGA outperforms other methods,
achieving an FID of 0.001 compared to 0.007 for VPoser
and 0.033 for NRDF. This result is not surprising, as other
methods use the average shape for all meshes, whereas
MEGA produces diverse results in poses and shapes. NRDF
generates more diverse meshes, with an APD of 28.61 cm,
while VPoser and MEGA achieve APDs of 18.32 and
20.77 cm, respectively. In summary, MEGA clearly outper-
forms VPoser, as our generated samples are more diverse
and plausible. NRDF produces more diverse poses, but the
distribution of the generation samples of MEGA is more
representative of the AMASS dataset. In Fig. 6, we present
some qualitative samples of MEGA’s generation, which ex-
hibit diverse and realistic poses and shapes.

In Fig. 7, similar to the main paper, we visualize the gen-
eration process after 1, 5, 9, 13, 16, and 20 steps. The ini-
tial mesh appears almost identical across all generations, as
only one token is predicted in the first step (with all oth-
ers set to 0 for visualization). However, diversity quickly
emerges in subsequent steps, with the final steps refining
the meshes to be more realistic. This pattern was antici-
pated, as the initial steps involve considerable randomness,
whereas the later steps tend to become more deterministic.



Figure 6. Random mesh generations. We use MEGA pre-trained in a self-supervised fashion to generate random human meshes.

Figure 7. Prediction process iterations. We visualize the predictions for intermediate random generations. All masked tokens are replaced
by the first token of the codebook, corresponding to index 0.

D. Interpreting diversity in predictions
In the stochastic mode, MEGA makes diverse predictions
given a single image. After making multiple predictions
given an image, we can compute the standard deviation of
the position of each vertex and interpret this value as a mea-
sure of the uncertainty in predictions. Indeed, if all sam-
ples are similar, we can conclude that the model is “certain”
about this prediction. When the results are very diverse
given a single image, we can interpret that as high uncer-
tainty.

Some qualitative samples are shown in Fig. 8. The two
images on the top show non-occluded bodies, and the rel-
ative depth between body parts is easy to perceive. Thus,
the standard deviation is low; the model consistently makes
accurate predictions. The body is partially occluded in the
two bottom images, and the depth of some body parts (such
as the left arm in the left image) is hard to estimate. The
model makes diverse predictions, which can be interpreted
as high uncertainty.

E. Qualitative results and failure cases
We present several failure cases in Fig. 9. Extreme poses
can result in prediction errors, occasionally leading to non-

anthropomorphic predictions as we do not rely on the SMPL
parameters [59]. Notably, the standard deviation of the ver-
tices’ position is exceptionally high in such instances.

Fig. 10 presents qualitative samples from in-the-wild
datasets. We can observe that in some cases (for instance,
images in the third and fourth rows on the right), our pre-
dictions appear even more accurate than the ground truth.
While this result is encouraging, it underscores the limited
value of striving for fractions of millimeters of accuracy on
datasets like 3DPW when the ground truth itself is imper-
fect.

F. Further discussions

Tokenizing vertices vs. SMPL parameters. Predicting the
SMPL parameters presents weaknesses [24], such as error
accumulation in the kinematic tree, that are addressed when
working on the 3D vertices. The SMPL model parameters
are attractive because they are a dense representation of hu-
man meshes, but once tokenized, this advantage is no longer
leveraged. Even if the tokenization of Mesh-VQ-VAE starts
from high-dimensional data, the obtained discrete represen-
tation is much denser than the representation proposed in
TokenHMR in terms of sequence length (54 vs. 160) and



Figure 8. Visualization of the predictions diversity. We visualize the standard deviation of the 3D location of each vertex. Bluish regions
in the mesh indicate low standard deviation, while reddish areas signify higher standard deviation.

Figure 9. Failure cases. In failure cases, it is worth noting that our model predicts very diverse results, which can be interpreted as high
uncertainty.

codebook size (512× 8 vs. 2048× 256): it is easier to pre-
dict 54 tokens among 512 values than 160 tokens with 2048
possible values.
Limitations. While MEGA generally produces accurate
predictions, it struggles with extreme poses significantly di-
vergent from the training data. Fig. 9 in Appendix E pro-
vides visualizations of these failure cases.
Future work. MEGA’s adaptable framework suggests po-
tential applications beyond its current scope. Future re-
search could explore generating human meshes conditioned
on text inputs [18]. We could also complement image
embedding with more observations, such as 2D pose to-
kens [26] or tokenized meshes of other individuals to model
social interactions [29, 65]. Extending this work to videos
by incorporating temporal masking during training [71, 72]
or including more extreme poses in training data [80] may
improve performance. Future works may also focus on
other generative models such as discrete diffusion [3].
Potential applications. A direct application of MEGA is to
generate solutions until we have a satisfactory answer, sim-

ilar to LLMs. ScoreHypo [87] proposed a scoring network
to select the best prediction among a range of outputs, in-
creasing the accuracy of predictions. We can also choose
the most suitable prediction depending on the use case: the
solution that minimizes the re-projection error in sports ap-
plications for higher precision, the most visually appealing
result in animation... The diversity of predictions can also
be interpreted as a measure of per-vertex uncertainty [48]
(see Sec. D).
Broader impact. MEGA contributes to the understanding
of human perception from images. While there is concern
about potential misuse for intrusive surveillance, MEGA
does not reconstruct facial features, preserving anonymity.
MEGA could have applications in healthcare, such as motor
assessment of patients. This application would be positive,
but potential prediction errors could negatively affect the
care pathway.



Figure 10. Qualitative examples on 3DPW and EMDB. The first column is the groundtruth, the second and third are the image and
the reprojection of the deterministic prediction, and the fourth is the prediction using the deterministic mode of MEGA with an HRNet
backbone.
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