
A. Related Works
Autoregressive pre-training. Autoregressive modeling has
been a foundational idea in machine learning and statis-
tics for decades, long before deep learning [11]. How-
ever, it has been popularized and scaled by works such
as GPT [12, 92, 93], and LLaMAs [31, 116, 117] which
have demonstrated the power of autoregressive pre-training
in natural language processing tasks. In vision, autore-
gressive principles have been applied through models like
iGPT [19], which flattens images into a sequence of dis-
cretized pixels and then treats them analogously to lan-
guage tokens. Similarly, Yu et al. [129] also discretize the
patches with a VQGAN model [34] and then predicts them
autoregressively. AIM [33] brings back the more practical
continuous approach and scales to very large vision mod-
els. However, AIM still lags behind other state of the art
models in sheer performance, as it uses vision-only data
and requires large model capacities to perform optimally.
This paper addresses these limitations by introducing multi-
modal pre-training in the AIMV2 family. Concurrent works
[77, 104, 113, 123, 125, 126, 132] have also investigated
similar multimodal autoregressive approaches that predict
text and images. However, they often focus on multimodal
generation quality rather than representation quality, and
therefore use discrete tokens or leverage diffusion mod-
els [98] as decoders [70, 110, 111].
Pre-training in vision. For many years, the computer vi-
sion community predominantly focused on supervised pre-
training [58, 97, 108], with ImageNet [61] checkpoints
serving as the backbone for most visual tasks. This even-
tually hit a wall in terms of scalability, as labels are ex-
pensive to acquire. The community therefore focused
on self-supervised methods. Earlier models used pre-
text tasks such as rotation prediction and patch deshuf-
fling [39, 86, 136]. More sophisticated models like Sim-
CLR [20], BYOL [42], SwAV [15] and DINO [16] leverage
variations of contrastive learning to train models that are
quasi-invariant to a broad range of image augmentations.
This turns out to learn strong and general visual represen-
tations without supervision. However they require care-
fully handcrafted data augmentations, which also makes
them computationally expensive, especially at scale. On
the other hand, MAE and BEiT [8, 48] introduced masking
strategies to reconstruct input data, reducing the reliance on
augmentations and increasing efficiency but sacrificing per-
formance. In practice, the best performing self-supervised
vision-only models use a mixture of augmentations and
masking [4, 87, 138]. Unfortunately, they are challeng-
ing to scale as they still need multiple forward passes for
each training step. AIM [33] departs from these methods
by employing a reconstruction-based autoregressive frame-
work that exhibits strong scalability but requires high ca-
pacity models to attain optimal performance. Leveraging

large-scale, noisy, weakly supervised datasets from the in-
ternet [13, 35, 100], an efficient paradigm emerged that
aligns vision and text features through contrastive learn-
ing [54, 94]. Nevertheless, CLIP-like models require large
batch sizes and meticulous dataset filtering [35, 100]. Sub-
sequent works, such as SigLIP [134], EVA CLIP [109], and
Fini et al. [37], have addressed these issues by optimizing
training processes and improving data filtering [35]. Unlike
these approaches, AIMV2 does not perform explicit feature
space alignment but aligns training objectives through au-
toregressive modeling for better multimodal synergy.
Captioning. Image captioning has been extensively stud-
ied prior to the computer vision literature. Early works [56,
121, 127] focused on aligning visual features with text to
generate descriptions using CNNs and RNNs. VirTex [28]
and ICMLM [99] utilize captioning for visual pre-training.
SimVLM [124] employs a PrefixLM approach, encoding
images and partial text tokens with a multimodal encoder
and decoding the remaining text. LEMON [51] scales the
language model in both parameters and dataset size. Ap-
proaches such as [65, 66] combines generative captioning
with discriminative contrastive objectives to enhance mul-
timodal learning, which led to scaling to billion-parameter
models [62, 67, 130]. Similarly, CapPa [118] trains a cap-
tioning model that functions as both a masked and causal
decoder, and Caron et al. [17] re-purposes a captioning
model for web-scale entity recognition. Different from most
previous approaches, AIMV2 does not use cross-attention
and treats vision and text tokens symmetrically, similar to
large multimodal models (e.g. LLaVA [73], MM1 [85],
and Wang et al. [122]). Additionally, AIMV2 incorpo-
rates an autoregressive image modeling loss on vision to-
kens, further enhancing performance beyond captioning-
only methods.

B. Hyperparamters
Pre-training. We outline the optimization hyperaparmeters
and data augmentations used during AIMV2 pre-training
in Table B1. For the captions, we adopt the tokenizer used
by SigLIP [134] and truncate any text longer than 77 tokens.
Attentive probing. The optimization and data augmenta-
tions hyperaparmeters for the attentive probing stage are
detailed in Table B2. We use the same set of hyperaparme-
ters for all AIMV2 capacities and the baselines. To ensure
a fair comparison, we sweep the learning rate and weight
decay using the ranges detailed in Table B2 and report the
strongest results for each model.

C. Image Recognition
Evaluation benchmarks. In Table 3, we evaluate the
recognition performance of AIMV2 and other baselines on
a diverse set of benchmarks that encompass fine-grained
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config ViT-L ViTs-H ViT-1B ViT-3B
Optimizer Fully decoupled AdamW [76]
Optimizer Momentum ω1 = 0.9,ω2 = 0.95
Peak learning rate 1e-3 8e-4 8e-4 4e-4
Minimum Learning rate 1e-5
Weight decay 1e-4
Batch size 8192
Patch size (14, 14)
Gradient clipping 1.0
Warmup iterations 12,500
Total iterations 1,500,000
Learning rate schedule cosine decay [75]
Augmentations:
RandomResizedCrop

size 224px
scale [0.4, 1.0]
ratio [0.75, 1.33]
interpolation Bicubic

RandomHorizontalFlip p = 0.5

Table B1. Pre-training hyperparameters We detail the hypera-
parmeters used for pre-training all AIMV2 variants.

config IN-1k Others
Optimizer Pytorch’s AdamW [76]
Optimizer Momentum ω1 = 0.9,ω2 = 0.999
Peak learning rate grid [5e-5, 1e-4, 2e-4, 3e-4, 5e-4, 1e-3, 2e-3]
Minimum Learning rate 1e-5
Weight decay [0.05, 0.1]
Batch size 1024 512
Gradient clipping 3.0
Warmup epochs 5 0
Epochs 100
Learning rate schedule cosine decay
Augmentations:
RandomResizedCrop

size 224px
scale [0.08, 1.0]
ratio [0.75, 1.33]
interpolation Bicubic

RandomHorizontalFlip p = 0.5
Color Jitter 0.3
AutoAugment rand-m9-mstd0.5-inc1

Table B2. Attentive probe hyperparameters. We detail the hy-
perparameters used during attentive probing of AIMV2 and the
baselines. For AIMV2 and the baselines we sweep over the learn-
ing rates and weight decay and report the best performance for
each model.

recognition, medical imaging, satellite imagery, natural en-
vironment imagery, and infographic analysis. We detail the
datasets, the splits and their sizes in Table C1.

High-resolution adaptation. In Table C2, we show the per-
formance of AIMv2 models with varying image resolutions
(224px, 336px, and 448px) across a broad set of recognition
benchmarks. These results extend the main paper, which
primarily focuses on the 224px resolution and the 3B model
at 448px. We observe that scaling both the model capac-
ity and image resolution leads to consistent improvements
across most tasks.

Dataset train test classes
Imagenet-1k [27] 1,281,167 50,000 1000
iNAT-18 [119] 437,513 24,426 8142
CIFAR-10 [60] 50,000 10,000 10
CIFAR-100 [60] 50,000 10,000 100
Food101 [10] 75,750 25,250 101
DTD [25] 3,760 1,880 47
Pets [88] 3,680 3,669 37
Cars [59] 8,144 8,041 196
Camelyon17 [7] 302,436 34904 2
PCAM [120] 262,144 32768 2
RxRx1 [112] 40,612 9854 1139
EuroSAT [49] 16,200 5400 10
fMoW [24] 76,863 19915 62
Infograph [89] 36,023 15,582 345

Table C1. Recognition benchmarks. We outline the recognition
benchmarks, the number of train and test images for each dataset,
and the number of categories.

Linear probing and LiT tuning. We show linear probe re-
sults in Table C3. We use GAP of the features for AIMV2.
AIMV2 outperforms OAI CLIP and SigLIP. Moreover, we
report more results for LiT in Table C4 where AIMV2 out-
performs Cap on all benchmarks.

D. Multimodal understanding
D.1. Instruction Tuning Setup
Evaluation benchmarks. We list the multimodal bench-
marks we use for assessing the performance of our mod-
els and the baselines in Table D2, together with the splits,
prompts, and evaluation metric utilized for each dataset.
Hyperparamters. The hyperaparmeters used for the in-
struction tuning stage are detailed in Table D1. We use the
same hyperaparmeters for all language decoders, AIMV2
capacities, and the baselines.

D.2. Additional Results
Instruction tuning with Cambrian. Table D3 evalu-
ates AIMv2, fine-tuned on Cambrian, across different res-
olutions using a tiling strategy. Unlike the main paper,
which uses Llava SFT, Cambrian offers a less in-domain
data mix and achieves stronger results on text-rich bench-
marks. Starting with a base resolution of 336px (match-
ing the encoder’s pretraining resolution), higher resolutions
(672px and 1008px) are obtained with tiling; by splitting
high-resolution images into 2!2 and 3!3 grids. AIMv2
paired with tiling shows consistent improvements on text-
rich benchmarks such as InfoVQA, ChartQA, DocVQA,
and TextVQA. However, on benchmarks like COCO, No-
Caps, TextCaps, and MMEp, no significant gains are ob-
served with increased resolution.
Instruction tuning with DCLM-1B decoder. In Fig-
ure D2, we present the same comparison between OAI
CLIP, SigLIP, and AIMV2 as in the main paper, but this
time using the Llava SFT mixture paired with a DCLM 1B
decoder. These results demonstrate that AIMV2 consis-
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ViT-L/14 86.6 76.0 99.1 92.2 95.7 87.9 96.3 96.3 93.7 89.3 5.6 98.4 60.7 69.0
ViT-H/14 87.5 77.9 99.3 93.5 96.3 88.2 96.6 96.4 93.3 89.3 5.8 98.5 62.2 70.4
ViT-1B/14 88.1 79.7 99.4 94.1 96.7 88.4 96.8 96.5 94.2 89.0 6.7 98.8 63.2 71.7AIMV2 224px

ViT-3B/14 88.5 81.5 99.5 94.3 96.8 88.9 97.1 96.5 93.5 89.4 7.3 99.0 64.2 72.2

ViT-L/14 87.6 79.7 99.1 92.5 96.3 88.5 96.4 96.7 93.8 89.4 6.7 98.4 62.1 71.7
ViT-H/14 88.2 81.0 99.3 93.6 96.6 88.8 96.8 96.4 93.3 89.4 7.2 98.7 63.9 73.4
ViT-1B/14 88.7 82.7 99.4 93.9 97.1 88.9 96.9 96.5 94.2 89.5 8.4 98.9 65.1 73.7AIMV2 336px

ViT-3B/14 89.2 84.4 99.5 94.4 97.2 89.3 97.2 96.6 93.2 89.3 8.8 99.0 65.7 74.0

ViT-L/14 87.9 81.3 99.1 92.4 96.6 88.9 96.5 96.6 94.1 89.6 7.4 98.6 62.8 72.7
ViT-H/14 88.6 82.8 99.4 93.6 97.0 88.9 96.8 96.5 93.4 89.6 7.8 98.7 64.8 74.5
ViT-1B/14 89.0 83.8 99.4 94.1 97.2 88.9 97.1 96.6 93.5 89.9 9.2 99.1 65.9 74.4AIMV2 448px

ViT-3B/14 89.5 85.9 99.5 94.5 97.4 89.0 97.4 96.7 93.4 89.9 9.5 98.9 66.1 74.8

Table C2. Frozen trunk evaluation for recognition benchmarks, high resolution AIMV2 models. We report the recognition perfor-
mance of the AIMV2 high resolution family of models when compared to the base 224px models shown in the main paper. All models are
evaluated using attentive probing with a frozen backbone.

AIMv2 OAI CLIP SigLIP
IN-1k 85.2 84.6 84.4

Table C3. Linear probe on IN-1k.

Model Samples Imagenet C10 C100 Food101 Pets Cars DTD
Cap 2B 75.0 96.9 82.7 90.9 91.1 90.1 58.1
AIMv2 2B 75.3 97.4 83.5 90.9 91.6 90.5 59.8

Table C4. LiT results for Cap and AIMV2 across multiple datasets.

config Llava SFT mixture Cambrian
Optimizer Pytorch’s AdamW [76]
Optimizer Momentum ω1 = 0.9,ω2 = 0.999
Decoder peak learning rate 1e-5 2e-5
Connector peak learning rate 8e-5 1.6e-4
Minimum Learning rate 0
Weight decay 0.01
Batch size 128 512
Gradient clipping 1.0
Warmup iterations 250 700
iterations 5000 14,000
Learning rate schedule cosine decay
Transformations [PadToSquare, Resize]

Table D1. Instruction tuning hyperaparmeters. We detail the
hyperparameters of the instruction tuning stage, both for the Llava
SFT mixture [73] and Cambrian [115].

tently outperforms the baselines, regardless of the decoder’s
capacity. Notably, in the practical setting of a small decoder,
AIMV2 maintains its position as the preferred choice for
multimodal understanding tasks.

D.3. Qualitative Results
The qualitative results in Figure D1 highlight AIMv2’s
strengths on multimodal evaluations compared to
SigLIP [134] and OAI CLIP [94] after instruction tuning
on Cambrian. In the first three examples, AIMv2 excels
in text-rich tasks by correctly localizing and extracting the
relevant textual information. For instance, in the example
on the left, AIMv2 is able to identify the correct value for
“supreme gasoline” and outputs the correct operation for
finding the solution (“Divide 50 by 3.65”). This contrasts

Benchmark Split Prompt Evaluation Metric
VQAv2 [41] Val

Answer the question using a

single word or phrase.

Accuracy
GQA [52] Val Accuracy
OKVQA [81] Val Accuracy
TextVQA [106] Val Accuracy
DocVQA [83] Val ANLS
InfoVQA [84] Val ANLS
ChartQA [82] Test Relaxed accuracy
SEED [64] Test (image split) Accuracy

ScienceQA [78] Test (image split) Answer with the option’s letter

from the given choices directly.

Accuracy
MME [38] Test (image split) Accuracy

COCO [71] Val
Provide a one-sentence caption

for the provided image.

CIDEr
TextCaps [105] Val CIDEr
NoCaps [2] Val CIDEr

Table D2. Multimodal benchmarks. We provide the list of
benchmarks used during the multimodal evaluation including the
reference, split, prompt, and the evaluation metric.

with OAI CLIP and SigLIP, which provide generic and
incomplete answers that fail to focus on the relevant
information. Similarly, AIMv2 successfully identifies
the license plate number (“AED-632”) in a blurry image,
demonstrating robust localization and reading capabilities
in challenging settings. In the luggage example, AIMv2
accurately reads the weight (“30.7”), despite the presence
of multiple distracting objects in the image, while the other
models make mistakes. Finally, in the calorie estimation
example, AIMv2 provides a more plausible response
(“1000 calories”) based on its knowledge, whereas SigLIP
and OAI CLIP offer less contextually plausible answers.

E. Detection, Segmentation and Grounding
E.1. Open Vocabulary Detection and Grounding
Performance on Small Objects. In Table E1 we report
the breakdowns of COCO between classes that are either
small, medium, or large. We can observe that AIMV2
consistently outperforms on the small classes by +0.5 AP,
compared to DFN-CLIP, the second best performing model
in that breakdown. This is further emphasized by the results
reported on LVIS val, as objects in LVIS are more likely to
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: How many gallons of supreme gasoline can 
I get with $50?

OAI CLIP: To calculate how many gallons of 
supreme gasoline you can get with $50, you 
would divide the total amount of money you 

SigLIP: To calculate how many gallons of 
supreme gasoline you can get with $50, you 
would divide $50 by the price per gallon

AIMv2: Divide 50 by 3.65.

: What might be the weight of 
this luggage?

OAI CLIP: 3.7

SigLIP: 30 pound

AIMv2: 30.7

: What is the license plate number?

OAI CLIP: The license plate number is 
partially obscured and not fully legible 
due to the blurriness of the image.

SigLIP: The license plate number is 
not clearly visible in the image 
provided.

AIMv2: The license plate number is 
AED-632

: How many approximate 
calories is in this meal?

OAI CLIP: 500

SigLIP: 500

AIMv2: 1000

Figure D1. Qualitative comparison of AIMv2, SigLIP, and OAI CLIP on multimodal tasks after instruction tuning on Cambrian.
AIMv2 demonstrates superior performance in both text-rich (e.g. extracting relevant information or reading text in cluttered scenes) and
knowledge-based scenarios (e.g., estimating caloric content), showcasing its ability to focus on relevant information, accurately localize
text, and provide contextually appropriate answers.

data mix decoder resolution VQAv2 GQA OKVQA TextVQA DocVQA InfoVQA ChartQA ScienceQA COCO TextCaps NoCaps MMEp

Cambrian Llama 3.0 336px 75.5 71.5 61.1 58.3 50.2 35.1 51.7 78.7 95.5 82.3 98.1 1594
Cambrian Llama 3.0 672px 77.5 72.8 62.0 69.1 76.4 48.3 64.7 79.4 92.6 80.6 95.4 1482
Cambrian Llama 3.0 1008px 77.7 73.2 62.0 72.2 79.2 53.5 65.1 81.6 93.7 81.6 97.6 1507

Table D3. Additional multimodal evaluations. We report the performance of AIMV2 using the Cambrian [115] SFT data mixture for
different image resolutions (336px, 672px and 1008px).

COCO LVIS Val
Model APall APs APm APl APall APr APc APf

OpenAI CLIP 59.1 43.5 63.5 74.8 31.0 17.6 27.2 41.2
DFN-CLIP 59.8 44.0 63.8 75.3 30.7 17.2 26.4 41.5
SigLIP 58.8 41.7 62.8 75.7 30.5 16.5 26.5 41.1
DINOv2 60.1 43.7 64.2 75.8 30.8 18.5 26.1 41.4
AIMV2 60.2 44.5 64.3 75.4 31.6 18.0 27.0 42.8

Table E1. Performance on OVD Benchmarks. We report
the performance on mean average precision (AP) for COCO and
LVIS. For COCO, we also report AP for the small, medium, and
large subsets, while for LVIS, we report on rare, medium, and fre-

quent subsets.

Window COCO LVIS Val RefCOCO RefCOCO+ RefCOCOg
Model Size APall APall Val P@1 Val P@1 Val P@1

DINOv2 16 60.1 30.8 92.2 85.9 89.1
AIMV2 60.2 31.6 92.6 86.3 88.9

DINOv2 59.6 29.6 92.1 85.0 88.7
AIMV2 24 59.8 31.2 92.3 85.8 89.1
DINOv2 60.2 30.7 92.5 86.1 89.5
AIMV2 32 60.3 32.9 92.5 86.3 88.9

DINOv2 37 60.2 31.1 92.2 85.9 88.4

Table E2. Ablation across window sizes. We report the perfor-
mance on mean average precision (AP) for COCO and LVIS. For
RefCOCO* we report Precision @1 on the respective validation
splits.

be small. There we observe an improvement of +1.3 AP on
the frequent subset against DFN-CLIP.

Window Size Ablation. Due to varying input resolutions
and feature map sizes used during pre-training, we ablate
the effect of window size [68] for AIMV2 and DINOv2
in Table E2. For AIMV2 the input image resolution is
scaled during pre-training such that the feature map size
matches the window size during finetuning, while for DI-
NOv2 the window size is fixed to match AIMV2. For
comparison we also add DINOv2 trained with a window
size of 37, which matches its pre-training feature map size.
Across the window sizes, AIMV2 outperforms DINOv2
across all OVD and for two out of three referring compre-
hension benchmarks. When comparing our best perform-
ing AIMV2 with the best performing DINOv2 across all
benchmarks, we observe that AIMV2 strongly outperforms
on LVIS Val while outperforming on all except one bench-
mark against DINOv2.

E.2. Detection and Segmentation via ViTDet Mask-
RCNN

To compare vision only capabilities of the encoders we in-
corporate them into a Mask-RCNN[47] detection model as
backbones by utilizing a ViTDet formulation to accommo-
date for high resolution (1024) detector training / testing in-
put size. We ensure that ViTDet [68] backbone forward pass
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VQAv2 GQA OKVQA TextVQA DocVQA InfoVQA ChartQA ScienceQA COCO TextCaps NoCaps MMEp
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(a) DCLM 1B + Llava SFT mixture

Figure D2. Instruction with a small decoder (DCLM). Performance comparison of OAI CLIP, SigLIP, and AIMv2 across 12 multi-
modal benchmarks using the Llava SFT mixture paired with a DCLM 1B decoder. AIMV2 exhibits superior performance across most
benchmarks, even with the constrained capacity of a small decoder.

detection mAP50:95 mask mAP50:95
Model APall APs APm APl APall APs APm APl

OAI CLIP 53.6 37.2 58.5 69.2 46.7 26.6 50.9 66.2
DFN-CLIP 53.4 37.1 58.3 69.3 46.2 26.4 50.8 66.4
SigLIP 53.3 37.2 57.6 69.7 46.6 27.1 50.5 66.3
DINOv2 55.5 39.5 59.9 70.6 48.3 29.4 52.3 67.4
AIMV2 54.0 37.4 58.8 70.0 46.7 26.7 51.1 66.5

Table E3. COCO17 detection and segmentation benchmarks.
We report overall detection and segmentation scores along with
the small, medium, and large subset breakdowns.

outputs match the respective ViT-L implementations before
the training. We utilize the same set of hyperparameters
for training all compared detectors: consistent windowed
attention size (16) ensuring comparable compute, AdamW
optimizer, cosine decay learning rate schedule, layer-wise
learning rate, and weight decay. All detectors are fine-
tuned on coco17 train split for 100 epochs with a global
batch size of 64 following the default recipe from MMDe-
tection [18]. We report results from the coco17-val split
in Table E3. AIMV2 consistently outperforms encoders
pre-trained on contrastive objectives, falling slightly behind
DINOv2 which provides the strongest performance.
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