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A. HgVT Model Architecture Details
The Hypergraph Vision Transformer (HgVT) adapts the architecture of standard Vision Transformers by incorporating
hypergraph features to enhance image analysis capabilities. Similar to Vision Transformers, HgVT utilizes a patch embedding
layer as its entry point, followed by an isotropic stack of L HgVT blocks, each based on the ubiquitous Llama blocks1 [54],
culminating in feature pooling and a classifier head. Configured to process both vertex and edge information, the blocks
include six main components: adjacency mask computation, vertex self-attention, edge aggregate attention, edge distribution
attention, and separate feed-forward networks for vertices and edges. This configuration facilitates dynamic bipartite graph
construction within each block, allowing the model to adaptively refine the input image’s representative hypergraph.
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Figure 5. HgVT Architecture, composed of stacked HgVT blocks with adjacency matrix A, vertex features X(V ), and hyperedge features
X(E). Pooling only applied to X(:iV ) and X(:vE); edge attention flow shown with gray arrows; norms and residual omitted for clarity.

Four key feature matrices – X(V ), X(V )
adj , X(E), and X

(E)
adj – represent the bipartite hypergraph features and are progressively

updated in each HgVT block in an interleaved manner. Each block also constructs a new adjacency matrix A from the
input X(V )

adj and X
(E)
adj matricies, which then contributes to the attention layers within that block. As illustrated in Figure 5, this

approach allows for the dynamic integration and processing of these matrices within each HgVT block, facilitating effective
feature interaction and updating.

For succinct discussion in subsequent sections, the update process for each layer l is encapsulated using the following
compact notation:

X
(∗,l+1)
∗ = X

(∗,l)
∗ +X

(∗,l)′
∗ , X

(∗,l)′
∗ = f

(
RN

(
X

(∗,l)
∗

)
, . . . ,A(l)

)
(7)

where RN(·) denotes the RMS Norm [62], and X
(∗,l)
∗ includes both vertex features and hyperedge features, along with their

respective adjacency features. The update function f(·) can utilize all four normalized feature matrices and the adjacency
matrix A(l), which is updated once per HgVT block.

A.1. Dynamic Adjacency Formation
Dynamically establishing the hypergraph structure is crucial for adaptability across varying semantic and spatial structures
inherent in different image inputs. Mirroring the query-key interactions found in attention mechanisms, HgVT utilizes cosine
similarity to evaluate the alignment between vertex and hyperedge adjacency features. This similarity assessment allows
hyperedges to effectively “query” vertices for relevant features, establishing a scale-invariant comparison that focuses on
the directionality of embedding vectors. To convert the cosine similarity to adjacency membership, we then form the soft
adjacency matrix A with a sharpened sigmoid function, detailed as follows:

A = σ

(
α · X̃(V )

adj

[
X̃

(E)
adj

]T)
, X̃

(∗)
adj =

X
(∗)
adj

||X(∗)
adj||2 + ϵ

(8)

where X̃
(∗)
adj represents the L2-normalized adjacency feature matrix. Here, σ denotes the sigmoid function, and α = 4 acts as

a sharpening factor, enhancing the sigmoid’s effectiveness by pushing intermediate values toward the extremes. The hard
1HgVT uses fixed sinusoidal position embeddings rather than rotary position embeddings.
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membership adjacency matrix Â = [A > 0.5] transforms these sigmoid outputs into binary memberships, crucial for defining
significant hypergraph relationships and suitable for sparse attention masking. In configurations where feature matrices and
adjacency feature matrices are tied (X(∗)

adj = X(∗)), X(∗)
adj is computed as X(∗)W∗, using a learned projection matrix to adapt

features for adjacency computation and maintain embedding adaptability.

A.2. Vertex Message Passing with Sparse Self-Attention
Shifting from traditional hypergraph models, which typically employ a gather → scatter mechanism for processing vertex-
hyperedge interactions, HgVT reconceptualizes hyperedges as communication pools that facilitate dynamic and efficient
information flow among vertices and their associated hyperedges. Instead of relying on a single dense attention operation, HgVT
organizes communication into two distinct streams: intra-hyperedge message passing and interactions between hyperedges and
their constituent vertices. By enabling direct message passing within hyperedges, the model significantly enhances inter-vertex
communication, allowing for more nuanced integration of contextual information. Furthermore, this configuration restricts
interactions to vertices that share hyperedges, naturally inducing sparsity in the interaction matrix and substantially reducing
computational overhead. The strategy for message passing between vertices within a hyperedge (Ve → Ve) is implemented
through the following update process:

X(V )′ = softmax
((

X(V )WQ

) (
X(V )WK

)T
+B

) (
X(V )WV

)
, B = 1−

[(
ÂÂT

)
> 0

]
(9)

In this equation, the mask B ∈ {0, 1}|V |×|V | is a dynamically computed based on the connectivity within the hyperedges,
derived from the hard adjacency matrix Â ∈ {0, 1}|V |×|E|. This masking ensures that attention computations are confined to
vertices within the same hyperedge, enhancing communication efficiency. Additionally, for simplification, the typical attention
scaling factor 1/

√
dk, which is generally used to stabilize the softmax calculations, is omitted from the above equation.

A.3. Hyperedge Message Passing with Fuzzy Cross-Attention
Completing the concept of hyperedges as dynamic communication pools outlined in the previous section, HgVT utilizes
cross-attention mechanisms to facilitate interactions between hyperedges and their constituent vertices. These mechanisms –
hyperedge aggregation attention (Ve → Ee), focusing on gathering information, and hyperedge distribution attention (Ee → Ve),
dedicated to scattering information – leverages HgVT’s unique bipartite representation for effective management of information
flows within these pools. By modulating the attention logits with the soft adjacency matrix A via a Hadamard product, the
model introduces a layer of “fuzziness” to the typical cross-attention mechanism. Such modulation dynamically aligns the
model’s response to the varied connectivity patterns typical in hypergraph structures, thereby enhancing both precision and
adaptability in processing information. The equations that formalize these attention processes are presented below:

X(E)′ = softmax

((
X(E)WQ

)(
X(V )WK

)T

◦AT +MT

)(
X(V )WV

)
(10)

X(V )′ = softmax

((
X(V )WQ

)(
X(E)WK

)T

◦A+M

)(
X(E)WV

)
(11)

In this framework, the soft adjacency matrix A ∈ R|V |×|E| modulates the attention logits through a Hadamard product (◦),
dynamically reflecting the true connectivity of vertices to hyperedges and providing a gradient path to update the weights
used to compute the adjacency feature matrices. Concurrently, the static interaction mask M ∈ {0, 1}|V |×|E| prevents virtual
hyperedges (vE) from interacting with image vertices (iV), ensuring the maintenance of the hierarchical hypergraph structure
described in Section 3.2 within the architecture. As before, the 1/

√
dk factor is omitted for clarity.

A.4. Sign Preserving Fuzzy Cross-Attention Modulation
While simple to implement, the Hadamard modulation introduced in the previous section is sub-optimal due to properties of
the softmax function, where weights of zero will bias the distribution (e.g. e0 = 1). More specifically, since Aij ∈ [0, 1), and
we set Aij > 0.5 to indicate membership, non-membership logits can still exhibit a positive attention contribution. Similarly,
maximal dissimilarity (Aij = 0) will move negative logits closer to zero, potentially resulting in undesirable interactions. To
address this issue, we adopt sign preserving modulation, which uses the shifted adjacency form (Ã = 2A− 1), resulting in all
non-membership logits becoming negative, while preserving the sign of the membership logits.

◦̃(S, Ã) = Clamp
−1≤x≤1

(
Sign(S) + Sign(Ã) + 1

)
◦
(
S ◦ Ã

)
(12)
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where S represents the pre-masked attention logits (e.g. Q ·KT ), and A is the soft adjacency matrix. The modified Hadamard
product ◦̃ then replaces the normal Hadamard product in Eqs. (10) and (11). To better understand this functional form, we can
consider the behavior table as shown in Tab. 8.

Ã \ S + 0 -

+ [3] → 1 : Ã ◦ S > 0 [2] → 1 : 1 · 0 = 0 [1] → 1 : Ã ◦ S < 0
0 [2] → 1 : 1 · 0 = 0 [1] → 1 : 1 · 0 = 0 [0] → 0 : 0 · 0 = 0

- [1] → 1 : Ã ◦ S < 0 [0] → 0 : 0 · 0 = 0 [−1] → −1 : −Ã ◦ S < 0

Table 8. Behavior table for the modified Hadarmard product ◦̃. Showing how the input signs for Ã = 2A− 1 and S affect the output, with
the pre-clamp sum in square brackets, the clamp output after the →, the resultant form, and the output sign.

To implement this modified Hadamard product, we pre-compute the element-wise correction term, defined
as ϕ : (a, s) ∈ R2 → {−1, 0, 1}, and compute the full function as a 3-element Hadamard product. Notably, this correc-
tion term has a zero derivative with respect to a and s, except at the boundaries, where it is undefined. Therefore, we can avoid
complications with differentiation by applying a gradient stop to the pre-sum correction term.

A.5. Hypergraph Feature Processing
Distinct point-wise feed-forward networks (FFNs) are utilized to process vertex and hyperedge features independently within
the HgVT blocks, ensuring differentiated processing for each set within the bipartite representation. These features are
integrated with adjacency features through a dense, fully-connected GeGLU [47] layer, allowing the FFN to effectively
combine both immediate and relational attributes. By updating both feature types and their adjacency embeddings within the
same FFN layer, the model centralizes computational tasks and simplifies the message passing process by focusing solely
on feature updates, avoiding the direct involvement of adjacency features and thus improving computational efficiency. The
update rules are governed by the following equation:

X
(∗)′
adj = FFN

(
X

(∗)
adj||X(∗)

)
, X(∗)′ = FFN

(
X

(∗)
adj||X(∗)

)
(13)

Here, (∗) represents either the vertex set V or hyperedge set E , and || represents concatenation.

A.6. Additional Variation Options for Efficiency
To enhance efficiency, several potential paths exist to reduce parameters and FLOPS, aligned with the principles of graph
neural networks. The feature matrices X(∗) and X

(∗)
adj can either be identical or have different dimensionalities, thereby

simplifying the computational requirements of the FFN layers. Additionally, tying both FFN layers to share weights further
reduces the parameter count. Consistent with practices in Graph Attention Networks [57], the weights for vertex self-
attention (WQ,WK ,WV ) and edge cross-attention (WK ,WV ) can also be tied. Implementing these strategies offers a range
of options to tailor HgVT variants for balancing memory usage and computational efficiency, optimizing the model for various
deployment environments based on performance needs.

B. Computational Overhead
In this section, we explore the computational overhead of our proposed HgVT models relative to other isotropic models. All
benchmarking experiments were conducted on an NVIDIA Quadro RTX 4000 GPU, using PyTorch 2.5.1 with CUDA 12.2.
We evaluated all models in 32-bit precision with a batch size of 32. To ensure stable measurements, we aggregated statistics
over 100 iterations, following an initial 10 warmup iterations to mitigate the impact of GPU initialization overhead. The
comparative results are presented in Tab. 9, which also includes a detailed cost breakdown, summed over all layers of the same
type. For completeness, we also report computational performance for a theoretical HgVT-B model (df = 448, da = 128,
L = 16, h = 14) that was not trained but included to illustrate its expected cost. Notably, we were unable to benchmark
ViHGNN [17] due to reproducibility issues with the publicly released code and have therefore excluded it from the table.

The results are summarized in Tab. 9, where models are grouped by scale and ordered by Top-1 ImageNet accuracy. The
main points of comparison are other vision transformers [2, 12, 53] and ViG [16], a graph convolution-based model. We find
that both ViG and HgVT exhibit higher latency and lower throughput than comparable vision transformers. For ViG, this
increased cost is attributed to the computationally expensive graph convolution operations. In the case of HgVT, the increased
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Table 9. Comparison of inference performance for HgVT and other isotropic networks. All results measured using 32-bit precision and a
batch size of 32 on an NVIDIA Quadro RTX 4000 GPU. Further showing time per component and overall inference percentage, with Spatial
denoting either Self-Attention or Graph Conv layers. ♦Transformer, ★GNN, and ▲HgVT. †Hypothetical HgVT-B model (not trained).

ImageNet VRAM (MB) Batch
Time (ms)

Speed
(imgs/s)

Time per Component (ms)
Model Params FLOPs Top-1 Top-5 Static Peak Patch Spatial FFN Cluster Aggregate Distribute

♦DeiT-Ti [53] 5.7M 1.3B 72.2 91.1 48.5 104 23.2 ±0.1 1370 ±8 0.6 (2.6%) 9.7 (41%) 9.5 (40%) – – –
★ViG-Ti [16] 7.1M 1.3B 73.9 92.0 54.3 331 79.5 ±0.3 402 ±1.6 3.0 (3.8%) 49.4 (62%) 13.5 (17%) 12 (15%) – –
▲HgVT-Mi (ours) 5.8M 1.4B 74.4 92.2 49.2 203 36.4 ±0.2 880 ±4.5 2.5 (7.0%) 6.8 (19%) 12.1 (33%) 1.1 (3.0%) 3.4 (9.4%) 3.8 (10%)
▲HgVT-Ti (ours) 7.7M 1.8B 76.2 93.2 56.6 210 47.1 ±0.2 679 ±3.0 2.5 (5.4%) 9.0 (19%) 16.0 (34%) 1.5 (3.1%) 4.5 (9.6%) 5.0 (10%)

♦DINOv1-S [2] 21.7M 4.6B 77.0 – 119 249 68.4 ±0.4 468 ±2.5 1.2 (1.7%) 29.6 (43%) 32.8 (48%) – – –
♦DeiT-S [53] 22.1M 4.6B 79.8 95.0 111 223 64.3 ±0.4 498 ±2.7 1.1 (1.8%) 25.7 (40%) 32.3 (50%) – – –
★ViG-S [16] 22.7M 4.5B 80.4 95.2 114 573 191 ±1.1 168 ±0.9 6.5 (3.4%) 120 (63%) 41.7 (22%) 20 (11%) – –
▲HgVT-S (ours) 22.9M 5.5B 81.2 95.5 116 365 113 ±0.5 282 ±1.3 6.0 (5.3%) 22.4 (20%) 45.9 (41%) 1.9 (1.7%) 11 (10%) 11 (9.9%)

♦ViT-B/16 [12] 86.4M 55.5B 77.9 – 372 633 221 ±1.3 145 ±0.9 2.3 (1.0%) 87.6 (39%) 126 (56%) – – –
♦DeiT-B [53] 86.4M 17.6B 81.8 95.7 357 579 213 ±1.3 150 ±0.9 2.2 (1.0%) 80.2 (37%) 124 (58%) – – –
★ViG-B [16] 86.8M 17.7B 82.3 95.9 359 1271 449 ±4.7 71.2 ±0.7 20 (4.4%) 281 (61%) 127 (28%) 27 (5.8%) – –
▲HgVT-B (ours)† 87.9M 20.4B – – 367 813 323 ±3.0 99.0 ±0.9 18 (5.6%) 56.0 (17%) 157 (49%) 2.5 (0.8%) 31 (9.5%) 32 (9.6%)

cost stems from the second FFN layer (used for edges) and the additional attention operations for aggregation and distribution
steps (as part of the bipartite hypergraph communication pool framework). However, despite this added complexity, HgVT
remains within 2× the performance of vision transformers. Notably, HgVT demonstrates lower self-attention cost despite
operating on a larger sequence length (246 vs 196 for a 2242 resolution), resulting from the reduced hidden dimension.

We also find that the expert edge pooling strategy has a negligible effect on inference performance (accounting for less
than 0.3% of total inference cost), and HgVT’s regularization strategy exhibits no inference cost, as it is only used to learn how
to construct well-structured hypergraphs that can generalize at inference time. When comparing with ViG, HgVT consistently
outperforms in both throughput (1.4×−1.6×) and peak memory usage (0.6×). Finally, HgVT’s implicit clustering approach
is an order of magnitude faster than ViG’s KNN-based clustering, highlighting the benefits of learned self-sparsification with
dynamic regularization over explicit clustering.

B.1. Improving Computational Efficiency
Although hypergraph-based models are often perceived as computationally expensive, HgVT demonstrates competitive perfor-
mance and memory efficiency, outperforming ViG in both throughput and peak memory usage. However, further improvements
in computational efficiency are possible through targeted optimizations. One promising direction is reordering the hypergraph
block structure to enable more efficient batched matrix multiplications. This could potentially reduce the cost of the second
FFN layer by up to 50%. A significant source of overhead stems from the split representations (X(V ),X(E),X

(V )
adj ,X

(E)
adj ), which

require multiple normalization and matrix multiplication steps that could be combined or parallelized. Additionally, the
sparsity properties of the attention mechanism – including diagonal symmetry in self-attention and sparsity in edge attention –
could be further leveraged through custom kernels. Moreover, the benefits from sparsity are expected to scale more effectively
at higher resolutions, where the cost of attention operations grows quadratically with sequence length.

Alternatively, larger models may reduce the performance gap, as illustrated by the hypothetical HgVT-B model shown
in Tab. 9. The smaller gap in inference performance for HgVT-B suggests that increasing the computational workload per
operation helps mitigate the relative impact of the call-graph overhead from the split representations. This indicates that
scaling the model size may naturally improve computational efficiency by better amortizing fixed costs.

C. Hypergraph Quality
To understand the structural quality of the generated hypergraph in HgVT, we consider how effectively it organizes features into
coherent, distinct clusters. Unlike fully connected transformer architectures, HgVT uses hypergraphs to structure relationships
in a way that preserves sparsity while capturing feature groupings. However, a naïve approach may achieve high-quality
metrics on trivial tasks, strongly aligning with low-level features (such as textures) rather than assessing the model’s ability to
capture more nuanced structural qualities. We therefore propose using four key metrics – Hyperedge Entropy, Intra-Cluster
Similarity, Inter-Cluster Distance, and Silhouette Score – to achieve a balanced assessment, while ensuring that these metrics
are computationally feasible and well-defined for practical evaluation.

In the context of HgVT, a “cluster” corresponds to a primary hyperedge (pE) within the hypergraph, where virtual
hyperedges (vE) are excluded due to the hierarchical graph structure. Each primary hyperedge represents a grouping of
vertices V = iV ∪ vV , where we primarily focus on image vertices (iV). This approach excludes virtual vertices (vV), which
serve as summarization tokens and are expected to be largely distinct from the image vertices due to the diversity regularization.
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By defining clusters through primary hyperedges, we focus our evaluation on image-based feature groupings, assessing the
quality of these groupings with respect to the specific properties captured by the following metrics.

1. Hyperedge Entropy (HE): Assesses the internal diversity within clusters.
2. Intra-Cluster Similarity (ICS): Measures cohesion among vertices within clusters.
3. Inter-Cluster Distance (ICD): Evaluates separation between clusters.
4. Silhouette Score (SIL): Provides an overall measure of clustering quality, balancing cohesion and separation.

The groupings within each primary hyperedge (pE) are defined with fuzzy weights derived from the soft adjacency matrix A,
which encodes the membership strength between vertices and hyperedges. All clustering quality metrics are therefore
exclusively computed on the vertex features X(V ), where using the image subset X(:iV ) allows for direct correspondence with
strong vision embeddings, such as from DINOv2 [38] and CLIP [42]. Furthermore, many of the metrics can be simplified to
utilize cluster centroids, resulting in more computationally efficient computations. For a given cluster j, the centroid Ec,j is
calculated as:

Ec,j =

∑
k∈V AkjXk∑
k∈V Akj

(14)

where Xk ∈ Rd represents the feature vector for the k-th vertex in V . This centroid formulation leverages the soft adjacency
matrix A ∈ R|V |×|E| to weigh each vertex’s contribution proportionally to its membership strength to the j-th hyperedge.

To standardize notation, we define two common functions for cosine similarity (csim) and distance (cdist), which are used
throughout the metrics. Cosine similarity between two feature vectors Xi and Xj is defined as:

csim(Xi, Xj) =
Xi ·Xj

||Xi|| ||Xj ||
(15)

where · represents the dot product, and ||X|| denotes the L2 norm of X . Likewise, cosine distance – used as a measure of
dissimilarity – is defined:

cdist(Xi, Xj) = 1− Xi ·Xj

||Xi|| ||Xj ||
(16)

C.1. Hyperedge Entropy
Hyperedge Entropy (HE) measures the concentration of vertex features within each cluster (hyperedge), quantifying
how “focused” or homogeneous the feature distribution is within each cluster. Using entropy provides a measure of intra-cluster
coherence, capturing the spread of vertex feature similarities with respect to the centroid feature for each hyperedge.

To compute HE for a given hyperedge j, we first calculate the cosine similarity between each vertex feature Xi and the
centroid feature Ec,j of the cluster. This similarity score quantifies the alignment between individual vertex features and the
core representation of the cluster. We then define pij as a normalized similarity score, computed using a softmax function over
these cosine similarities, limited to vertices belonging to the cluster j as defined by the hard adjacency matrix Â:

pij =
exp(csim(Xi, Ec,j))∑

v∈Ej
exp(csim(Xv, Ec,j))

(17)

where Ej represents the set of vertices (indexed by v) in the j-th hyperedge as defined by Â. The entropy for each hyperedge j
is then calculate as:

HEj = −
∑
i∈Ej

pij log(pij) (18)

This formulation yields an entropy distribution over the |E| hyperedges for a given graph, and a larger distribution when aggre-
gated over an evaluation dataset. Here, lower entropy values indicate more concentrated, homogeneous feature distributions
within the cluster, and higher entropy suggests more diverse or spread-out feature distributions.

From an interpretive standpoint, low HE values may signal that the cluster is dominated by homogeneous features, often
associated with low-level structures, such as texture. For instance, in an image of a cat, a hyperedge with a low HE could
indicate that fur-related features are overly concentrated, which may reflect a focus on surface-level details rather than high-
level semantic structure. Conversely, a high HE can indicate poor intra-cluster coherence or semantic clustering, potentially
caused by noise or irrelevant feature vectors within the cluster. Thus, balancing HE across clusters is desirable to ensure that
hyperedges reflect meaningful, well-structured groupings of image features.
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C.2. Intra-Cluster Similarity
Intra-Cluster Similarity (ICS) measures the cohesion of vertex features within each cluster (hyperedge), providing a sense of
how similar the features are within each group. For each hyperedge, ICS is calculated as the average cosine similarity between
each vertex feature Xi and the centroid feature Ec,j of the j-th hyperedge. This metric captures the internal consistency of
each cluster, with higher values indicating more cohesive feature groupings.

ICSj =
1

|Ej |
∑
i∈Ej

csim(Xi, Ec,j) (19)

where Ej represents the set of vertices (index by i) in hyperedge j as defined by the hard adjacency matrix Â. To ensure
meaningful results, clusters with fewer than two vertices are omitted from this calculation, as they lack sufficient members to
define intra-cluster similarity.

C.3. Inter-Cluster Distance
Similar to ICS, Inter-Cluster Distance (ICD) measures how distinct different clusters (hyperedges) are from one another.
Specifically, ICD quantifies the separation between clusters by measuring the cosine distance between the centroids of
hyperedge pairs. This metric reflects how far apart different clusters are in feature space, with higher values indicating greater
separation and, thus, more distinct feature groupings. For each pair of hyperedges (j, k), ICD is computed as:

ICDj,k = cdist(Ec,j , Ec,k) (20)

The overall ICD for the graph can then be aggregated by taking the average distance across all hyperedge pairs:

ICD =
1

|E|(|E| − 1)

∑
j ̸=k

ICDj,k (21)

C.4. Silhouette Score
The Silhouette Score [45] combines both intra-cluster similarity (cohesion) and inter-cluster distance (separation) to provide
an overall measure of the clustering quality. This score evaluates how well each vertex is clustered with respect to its assigned
hyperedge and nearby clusters. For each vertex i within a hyperedge j, two values are defined:

• aij : the average distance between vertex i and all other vertices within its assigned hyperedge j, computed using the soft
adjacency matrix A.

• bij : the lowest average cosine distance between vertex i and all vertices in other hyperedges, effectively measuring how
close i is to its nearest neighboring cluster.

These two values are calcualted as follows:

aij =

∑
v∈Ej ,v ̸=i Avj cdist(Xi, Xv)∑

v∈Ej ,v ̸=i Avj
(22)

bij = min
k,k ̸=j

∑
v∈Ek,v ̸=i Avj cdist(Xi, Xv)∑

v∈Ek,v ̸=i Avj
(23)

The Silhouette Score sij for the i-th vertex in the j-th hyperedge is computed as:

sij =
bij − aij

max(aij , bij)
(24)

where the individual score sij is bounded by [−1, 1], where more positive indicates strong cluster cohesion, more negative
indicates poor clustering, and zero indicates that the vertex lies on the boundary between clusters. Finally, the global Silhouette
score for the graph can be computed by averaging sij across all edges and vertices:

SIL =
1

|E| |V|
∑
j∈E

∑
i∈V

sij (25)
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The global Silhouette score omits clusters with fewer than two elements (as is standard), due to sij being undefined for such
pairs. From an interpretive standpoint, a higher SIL (closer to one) is ideal; however, it too can suffer from the same flaw as HE
and ICS, where focus on trivial (texture) clustering result in better values, incorrectly suggesting strong clustering. Similarly,
highly sparse graphs with small vertex counts per hyperedge can result in higher than expected SIL scores. For example, it is
easier to form a tight cluster of two vertices than 20. We therefore suggest considering all four metrics en-aggregate, where a
high SIL score is only meaningful with a high ICS, ICD, and a moderate to high HE (indicating diversity within each cluster).

C.5. Behavior with DINO Features
Following the definitions of graph quality metrics, we explore how these metrics behave when HgVT-Lt’s feature representa-
tions are substituted with DINOv2 [38] features of progressively richer semantic strength. This analysis serves two purposes.
First, it allows us to validate our chosen graph quality metrics by observing whether they effectively capture structural
differences as feature richness increases, supporting the interpretive value of these metrics within the HgVT framework.
Second, it provides insight into the level of semantic detail the HgVT model’s hypergraphs are focusing on, shedding light on
the model’s capacity to capture and represent varying levels of semantic information.

We consider three pooling methods – image pooling, expert pooling, and combined pooling – within the HgVT-Lt model
trained on ImageNet-100. Image pooling considers only image vertices (iV), ignoring the hypergraph structure; expert pooling
incorporates hierarchical information flow through virtual hyperedges (vE); and combined pooling integrates both approaches.
For each configuration, we extract the hypergraphs of all ImageNet-100 validation images (totaling 5k). Specifically, we
utilize the soft adjacency matrix A from the final layer of HgVT-Lt and then substitute the image vertex features X(:iV ) with
the final DINOv2 features (spanning model scales S, B, L, G). Notably, the the pooling methods indirectly influence the
hypergraph structure, as they primarily affect the classification head during training but subsequently affect the generated
hypergraph structure through learned representations.
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Figure 6. Comparing graph quality metrics under DINOv2 feature scaling with HgVT-Lt trained on ImageNet-100. Further comparing
expert, image, and combined pooling methods. Showing (a) the raw metric medians, and (b) the Cliff’s D measure for the metric distributions
against expert pooling as a basline.

The spatial correspondence of both DINOv2 features and HgVT’s image vertices with the original input image allows us to
substitute the original HgVT image vertex features with DINOv2 features. This alignment is well-established in applications
such as object segmentation and depth estimation for DINOv2 features and verified through graph visualizations in Appendix E
for HgVT. To preserve spatial coherence between the two models, we resize DINO input images to 280x280 from the
original 160x160 resolution. With a patch size of 14, this resizing yields 20x20 image tokens, which are then aggregated using
2x2 patches to match HgVT-Lt’s 10x10 image vertex structure. For each pooling configuration, we compute the graph quality
metrics across DINOv2 model scales (as shown in Fig. 6a) and measure the effect sizes of these distributions, using expert
pooling as a baseline with Cliff’s Delta for comparison (see Fig. 6b). Cliff’s Delta [5] provides a non-parametric measure
of effect size that quantifies the degree of separation between two distributions, with values close to 0 indicating minimal
difference and values approaching ±1 indicating strong differences in distribution. Notably, all measured distributions exhibit
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a statistically significant separation, as measured by a K-S test.
As DINO model size increases, all pooling methods exhibit consistent trends in clustering metrics. Hyperedge Entropy (HE)

remains stable, indicating that the overall spread of feature diversity within clusters is unaffected by feature scaling. How-
ever, Intra-Cluster Similarity (ICS) decreases, revealing finer distinctions within existing clusters as DINO features scale.
Meanwhile, Inter-Cluster Distance (ICD) and Silhouette Score (SIL) increase, reflecting improved separation among the
fixed clusters. These trends suggest that as DINO models grow, they approach a more balanced clustering structure, similar
to HgVT’s (with ICS around 0.45 and ICD around 0.32). This convergence implies that HgVT may capture a level of semantic
structure comparable to what would be achieved by a much larger DINO model, highlighting HgVT’s inherent efficiency in
representing semantically rich information.

When comparing pooling methods, differences in clustering metrics for expert and image pooling remain mostly con-
sistent (when considering effect size). Image pooling yields marginally higher ICS with increasing DINO model size and
noticeably higher ICD and SIL, resulting in clusters that are more cohesive and well-separated. This suggests that image
pooling may focus on distinct, cohesive textures, with reduced graph inter-connectivity and cluster overlap. Expert pooling, by
contrast, exhibits higher HE and lower ICD, indicating that clusters are more internally diverse and less distinctly separated. In
this case, omitting the image vertices during classification allows for increased graph connectivity, which is reflected by a
degradation of clustering metrics. Finally, the combined pooling method aligns closely with expert pooling, while recovering a
slight improvement to ICD and SIL due to the direct inclusion of image vertices during classification.

D. Hypergraph Representations
In this section, we explore the spatial organization of feature representations using Uniform Manifold Approximation and
Projection (UMAP) visualizations [34], generated from the HgVT-Lt model on the ImageNet-100 validation set. UMAP
enables a comparative analysis of how different components within the hypergraph structure distribute features in their learned
latent space. By reducing dimensionality to two components, UMAP highlights the spatial clustering of graph feature vectors,
extracted from the model’s final layer. To address varying group sizes (iV , vV , pE , vE), we standardize each plot’s sample size
to the minimum group size, randomly sampling from other groups as needed to ensure consistency.

D.1. Full Graph Feature Representations
We explore the full graph feature representations by considering all features (V ∪ E), only vertices (V), and only edges (E)
across three pooling methods: expert pooling, image pooling, and a combined approach. The UMAP representations shown
in Fig. 7 utilize a nearest neighbors setting of 10 and a minimum distance of 0.1, with consistent seeds for reproducibility.

From the UMAP results, we observe a distinct separation between expert and image pooling, with the combined method
exhibiting characteristics of both. In all cases, image vertices (iE) form relatively tight clusters, typically surrounded by
other feature categories. Distinct clusters are evident for virtual vertices (vV) and primary hyperedges (pE), with 12 (|vV|)
and 32 (|pE|) clusters, respectively. Under image pooling, virtual hyperedges (vE) form six (|vE|) distinct groups, likely
due to the absence of model incentives to leverage these features for classification. In contrast, in the expert and combined
pooling cases, virtual hyperedges appear as diffuse clouds, suggesting strong interconnectivity with virtual vertices and primary
hyperedges.

For expert pooling, virtual hyperedges show overlap with image vertices, a phenomenon absent in the combined pooling
case. This overlap likely represents low-level image features that must be transmitted through virtual hyperedges in the expert
pooling scenario, whereas in the combined case, they can be transmitted directly through pooled image features. Additionally,
we observe diffuse overlap of virtual vertices with image vertices in expert pooling, replaced by a single overlapping virtual
vertex in the combined case. This distinction suggests two possible strategies for supporting lower-level image features: either
a shared overlap across virtual vertices or a single dedicated virtual vertex providing feature support. Overall, the UMAP
results align with the findings from the previous section.
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(a) Expert Pooling. (b) Image Pooling. (c) Expert + Image Pooling.

Figure 7. UMAP plots of the HgVT-Lt model under different pooling methodings: (a) Expert pooling, (b) Image pooling, and (c) both
Expert and Image pooling. Showing image vertices (iV), 12 virtual vertices (vV), 32 primary hypereges (pE), and 6 virtual hyperedges (vE).

D.2. Expert Pooling Feature Representations
Given the clustering behavior for virtual edges (vE) observed in the previous section, we further examine their structure when
plotted independently to determine if unique patterns emerge. Specifically, we assess whether this structure correlates with
specific experts (edge IDs) or macro-classess, such as Dogs and Birds in ImageNet-100, considering both the expert pooling
and combined cases. Due to the diffuse nature of this feature type, we increase the nearest neighbors setting to 120 and set the
minimum distance to 0.5 for clearer clustering in Fig. 8.

The clustering of edge IDs suggests that specific edges capture both overlapping and distinct aspects of the feature space,
with each cluster representing shared or distinct features specialized for certain macro-classes. This behavior is validated when
considering the clusters corresponding to the dog macro-class, emerging in both the expert and combined pooling cases. In
contrast, when considering birds, they consistently form a less compact cluster, occupying a unique sub-region with minimal
interference from other categories. Notably, bird features are more tightly clustered in the expert pooling case, while in the
combined pooling case, bird features are more dispersed, with some overlapping with the center. This increased spread in the
combined case likely reflects the distributed influence of expert edges, which only partially contribute to the final clusters,
whereas the expert-only case preserves more focused class-specific features. Additionally, we observe that birds consistently
align with a single expert ID, while dogs are associated with no more than two expert IDs. This allocation pattern is further
analyzed in Appendix J.
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(a) Expert Pooling. (b) Expert + Image Pooling.

Figure 8. UMAP plots of virtual hyperedge classification allocation for the HgVT-Lt model under different pooling methodings: (a) Expert
pooling, (b) both Expert and Image pooling. Showing overall expert allocation vEi, and select ImageNet-100 macro-classes: Dogs and Birds.

E. Graph Visualization

Visualizing the hypergraph structure in HgVT provides crucial insights into how various components – such as virtual vertices,
primary hyperedges, and image vertices – interact to inform predictions. However, given the complexity of hypergraphs and
the dense interconnections across vertices (nodes) and edges, a straightforward visualization would be overwhelming and
challenging to interpret. To address this, we apply a pruned projection method that represents the hypergraph in "slices,"
focusing on key relationships while filtering out less influential components. This approach balances interpretability with
structural fidelity, offering a clearer view of the hypergraph’s hierarchical organization.

In this method, we begin by selecting the top-1 (most confident) virtual edge as the root node. From this root, we identify
and rank the connected virtual vertices (vNodes) using the soft adjacency matrix A, selecting those with contributions above a
threshold of 0.1. For each vNode, we identify the top-H primary hyperedges (pEdges) and treat each as an individual slice in
the visualization. Some pEdges appear in the top-H of multiple vNodes, enabling the visualization to capture overlapping
and shared feature pathways effectively. Each pEdge is visualized as a 2D image, with patch dimming based on contribution
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Classi�er Head

Virtual Edges

Virtual Vertices

Primary Edges

Image Vertices

Figure 9. Example hypergraph structure used for visualization. Showing the four distinct feature types and the subset selection (top-1; root
node) expert pooling used for classification - unused virtual edges are shown in light gray. Showing direct (0-hop; red) and indirect (1-hop;
pink) virtual vertices, along with their membership primary hyperedges (orange), and the associated image vertices (blue). Features omitted
in the graph visualizations are shown with open circles. Notably, a primary edge may be duplicated if it belongs to multiple virtual vertices.

intensity (no dimming for the highest contributions, maximal dimming for zero contributions). Finally, we add secondary
virtual vertices linked to the primary hyperedges, further enriching each slice’s representation by showing indirect (1-hop)
influences. Fig. 9 provides a graphical depiction of this hierarchical structure, illustrating the direct and indirect virtual vertices
and the connecting elements, indicating which components are plotted or excluded due to the pruned slice mechanism.

The following figures present graph visualizations that highlight the autosegmentation properties and hierarchical feature
localization within the hypergraph structure, with distinct regions corresponding to features like eyes and feet. Notably, these
visualizations are derived solely from the adjacency matrix rather than attention layers, though they exhibit structural properties
similar to what one might expect from attention visualizations. This demonstrates that the adjacency relationships within the
hypergraph capture meaningful spatial and semantic organization independently of the attention mechanisms.

(a) Class label=“Mergus serrator” (98). (b) Class label=“Bull mastiff” (243).

Figure 10. Graph visualizations from the HgVT-Ti model trained on ImageNet-1k, using samples from the ImageNet validation set. Showing
top-5 direct virtual vertices and their top-5 highest contributing primary hyperedges above the horizontal line; top-1 indirect virtual vertex and
its primary hyperedges below. Leftmost column shows aggregated summary of all primary hyperedges; remaining columns show individual
primary hyperedges. Shared primary hyperedges are marked with unique identifier boxes; a black rectangle indicates no duplicates.

12



(a) Class label=“Palace” (698). (b) Class label=“Irish terrier” (184).

(c) Class label=“Great grey owl” (24). (d) Class label=“Border collie” (232).

Figure 11. Graph visualizations from the HgVT-Ti model trained on ImageNet-1k, using samples from the ImageNet validation set. Showing
top-5 direct virtual vertices and their top-5 highest contributing primary hyperedges above the horizontal line; top-1 indirect virtual vertex and
its primary hyperedges below. Leftmost column shows aggregated summary of all primary hyperedges; remaining columns show individual
primary hyperedges. Shared primary hyperedges are marked with unique identifier boxes; a black rectangle indicates no duplicates.
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F. Semantic Segmentation
In this section, we evaluate the performance of HgVT on the dense prediction task of semantic segmentation. Given the
transformer backbone, we adopt the training protocol proposed in DINOv2 [38], which involves an initial finetuning phase
at higher input resolutions on ImageNet-1k with positional embedding interpolation, followed by freezing the backbone
and training segmentation heads. Final segmentation is then performed by merging overlapping “stencil” predictions at the
segmentation training resolution (i.e. 512x512). Notably, freezing the backbone deviates from standard semantic segmentation
training protocols. This is due to the fact that semantic segmentation relies heavily on spatial features (image vertices), and
there is no straightforward gradient pathway for the hyperedge features, thereby preventing effective full-backbone finetuning.

F.1. Resolution Finetuning
To bridge the gap between pretraining and dense prediction tasks, we perform resolution finetuning, a process where the
model is further trained on ImageNet-1k at a higher input resolution. While DINOv2 employs a resolution finetuning strategy
at 4162 for 10k steps using a cosine annealing learning rate schedule, we adopt a more lightweight approach inspired by
TransNeXt [48]. Specifically, we finetune the model at a resolution of 3842 for 5 epochs using a constant learning rate of 1e-5.

Additionally, to maintain consistent sparsity in the hypergraph representations at the higher resolution, we adjust the
maximum population regularization value (β) to |V|/4, where |V| is the number of vertices. This adjustment ensures that
the model’s structural regularization scales appropriately with the increased resolution. All other training hyperparameters
(including data augmentation) remain identical to those used during the initial pretraining phase.

Table 10. Ablations on resolution finetuning HgVT-S.
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Figure 12. Top-1 ImageNet-1k accuracy for HgVT-S before
and after resolution finetuning.

In Tab. 10, we present an ablation study evaluating the impact of interpolating versus reinitializing positional embeddings,
as well as the effect of varying the maximum population regularization value (β). We find that interpolating positional
embeddings leads to better performance, while increasing β helps prevent over-sparsification, with β = 1

4 |V| yielding the best
results at higher resolutions. Interestingly, this setting slightly degrades performance when maintaining the original training
resolution, suggesting that the benefits of a larger population regularization are resolution-dependent. Fig. 12 shows the Top-1
ImageNet accuracy across resolutions for the baseline HgVT-S and method C1, revealing trends that are remarkably consistent
with the resolution finetuning behavior observed in DINOv2 [38].

F.2. Segmentation Results
Following the finetuning phase, we train segmentation heads on top of the frozen backbone, following the protocol used by
DINOv2, with training hyperparameters summarized in Tab. 11. We evaluate performance on the ADE20k [67], CityScapes
[6], and PASCAL VOC [13] datasets. To better understand the feature representations learned by HgVT, we compare the L2
feature norms of the last four layers of HgVT-S and DINOv2-S for an example image, as shown in Fig. 13. Notably, HgVT
exhibits significantly sparser feature activations compared to DINOv2. This suggests that relying solely on the final feature
layer may limit segmentation performance, leaving gaps in otherwise contiguous regions.

Given the uncertain behavior of the sparse feature activations, we explore several segmentation head architectures to assess
the effectiveness of each in decoding the sparse image vertex features.

• Linear Head: A simple linear projection following a batch normalization layer as used in DINOv2.
• MLP Head: A two-layer perceptron following Linear-BN-SiLU-Linear.
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Table 11. Segmentation Hyperparameters.

Parameter Value

Train Resolution 512× 512
Global Batch Size 16

Schedule Poly
Power 1.0
Total Steps 40k
Warmup Steps 1.5k

Optimizer AdamW
Peak LR 1e-3
Weight Decay 1e-4
(β1, β2) (0.9, 0.999)

Resize Ratio 0.5− 2.0

Augmentations
Random Crop, Flip,

Photometric

Input Image

Layer 12/12 Layer 11/12 Layer 10/12 Layer 9/12

Layer 14/14 Layer 13/14 Layer 12/14 Layer 11/14

DINOv2-S

HgVT-S

Figure 13. Comparison of DINOv2-S (top) and HgVT-S (bottom) spatial features for the last 4
layers in each network. Plotting the per-token L2 norm to visualize the HgVT feature sparsity.

• Conv-MLP Head: Similar to the MLP head but with a 3x3 convolution as the input layer.
• Pyramid Pooling Module (PPM): Module proposed by PSPNet [65], which utilizes multi-level pooling for isotropic

input features.
• Upsampled PPM Head (PPMU): An enhanced PPM implementation which uses a 2x up-sampling step with pixel

shuffle before the final MLP.

Table 12. Semantic Segmentation results on ADE20k using the frozen HgVT-S backbone. Head method includes input configuration:
-1 last backbone layer only, -4 last four backbone layers concatenated. Showing mIoU (%) and Pixel Accuracy (%) where available. ∗Our
evaluation. †Results from github.com/CSAILVision/semantic-segmentation-pytorch. ‡Results from DINOv2 [38].

Backbone Head ADE20k CityScapes PASCAL VOC

Method Size Frozen Method Size Multiscale mIoU Acc. mIoU Acc. mIoU Acc.

Swin-Ti [33] 28.3M ✗ UperNet [59] 60M ✓ 46.1 – – – – –
TransNeXt-Ti [48] 28.2M ✗ UperNet [59] 59M ✗ 51.1 – – – – –
TransNeXt-Ti [48] 28.2M ✗ UperNet [59] 59M ✓ 51.7 – – – – –
TransNeXt-Ti [48] 28.2M ✗ Mask2Former [4] 47.5M ✗ 53.4 – – – – –

ResNet-18 [20] 11.5M ✗ PPM-1 12.9M ✗ 33.8† 76.1† – – – –
ResNet-50 [20] 25.6M ✗ PPM-1 23.2M ✗ 41.3† 79.7† – – – –

ResNet-101 [20] 44.5M ✗ PPM-1 23.2M ✗ 42.2† 80.6† 78.4 – 82.6 –
DINOv2-S/14 [38] 22.1M ✓ Linear-1 59.3k ✗ 44.3 79.5∗ 66.6 – 81.1 95.9∗

DINOv2-S/14 [38] 22.1M ✓ Linear-4 237k ✗ 46.0∗ 80.1∗ – – 81.8∗ 96.0∗

DINOv2-S/14 [38] 22.1M ✓ Linear-4 237k ✓ 47.2 – 77.1 – 82.6 –
DINOv2-G/14 [38] 1.10B ✓ Linear-1 237k ✗ 49.0 – 71.3 – 83.0 –

OpenCLIP-G/14 [25] 1.01B ✓ Linear-1 214k ✗ 39.3‡ – 60.3‡ – 71.4‡ –

HgVT-S/16 22.9M ✓ Linear-1 34.6k ✗ 12.0 43.3 30.2 72.9 34.0 81.4
HgVT-S/16 22.9M ✓ Linear-4 138k ✗ 26.7 68.5 52.4 89.3 66.7 91.7
HgVT-S/16 22.9M ✓ MLP-4 235k ✗ 28.5 71.8 58.0 91.7 72.9 93.6
HgVT-S/16 22.9M ✓ ConvMLP-4 1.84M ✗ 33.5 74.3 64.5 93.1 76.1 94.4
HgVT-S/16 22.9M ✓ PPM-4 15.5M ✗ 36.0 75.7 68.0 93.8 77.9 94.9
HgVT-S/16 22.9M ✓ PPMU-4 17.4M ✗ 37.6 76.4 69.8 94.3 79.0 95.1

Segmentation results are shown in Tab. 12. Consistent with the feature norm analysis, the Linear Head underperforms,
particularly when applied solely to the final feature layer. To investigate this further, we also evaluate a linear head that
combines features from the last four backbone layers (consistent with the multiscale method in DINOv2). While this approach
improves performance compared to using only the final layer, it still falls short of more complex architectures. This suggests
that deeper features mitigate some of the sparsity effects observed in Fig. 13, while linear projections alone are insufficient
for fully decoding the hypergraph representations. While the more complex PPMU method achieves an mIoU of 37.6% on
ADE20K, it falls short of both DINOv2-S and state-of-the-art methods.

In contrast, results on CityScapes and PASCAL VOC are stronger, with the PPMU heads closing the gap on PASCAL VOC
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Figure 14. Semantic Segmentation Visualization. Showing examples from ADE20k (top) and PASCAL VOC (bottom).

and surpassing DINOv2 Linear-1 classifier on CityScapes. Notably, all convolution-based methods outperform OpenCLIP-G
on these two datasets, suggesting that (1) the poor ADE20K results are partially attributable to class confusion and (2) the
sparse features result in discontinuous regions, which degrade segmentation performance. The convolution-based methods
help smooth out these discontinuities, improving overall performance. Additionally, the reduced class count (20 vs. 150) likely
mitigates class confusion, contributing to stronger performance on CityScapes and PASCAL VOC.

We attribute this low performance to several factors. First, the lack of backbone fine-tuning leads to object class confusion,
where similar classes (e.g., cushion and pillow) that were not targeted during ImageNet-1k training are incorrectly assigned.
Second, the high degree of feature sparsity encouraged by population regularization may result in localization errors, where
objects are not encoded at the correct pixel location. As supporting evidence, we measure a 4.3% lower mIoU and 2.7% lower
pixel accuracy on ADE20k when using a Linear-4 head with configuration B1 in Tab. 10. Third, the patch size of 16×16 pixels
further reduces segmentation localization compared to the more commonly used 8×8 down-sampling. Notably, DINOv2 uses a
14×14 patch size, self-supervised learning, and ImageNet-22k pretraining, resulting in denser features (see Fig. 13), which
likely accounts for part of the performance gap. Finally, a large amount of information –including the hyperedge features
and virtual nodes – is not directly used in semantic prediction due to the lack of direct spatial alignment. Leveraging these
additional features may improve boundary detection and class distinction, highlighting areas for future exploration.

The segmentation visualizations in Fig. 14 align with these findings. The linear head on HgVT produces discontinuous
segmentation regions, whereas the convolution-based methods help fill these gaps. The PPMU head appears to over-smooth
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the results, leading to missed fine details (e.g., the bedroom and bicycle in the second and last rows). In certain PASCAL VOC
examples, HgVT with a linear head outperforms DINOv2, where increased sparsity results in more well-defined segmentation
regions (e.g., the large bicycle image in the last row). Finally, class confusion can be seen in the bedroom scene (second
row), where the top of an ottoman is correctly identified while the bottom is misclassified as a coffee table. This supports our
hypothesis that object class confusion is occurring and may partially explain the poor ADE20K performance.

F.3. Using Semantic Segmentation for Interpretability
Aside from benchmark evaluation, the linear segmentation results also provide insight into how the model encodes information.
Large contiguous regions are sparsely represented by the correct class, with gaps filled by high-frequency or default classes
(e.g., wall and sky). This suggests that the model assigns the correct class to a small subset of vertices, efficiently summarizing
the local structure rather than encoding them uniformly. The hypergraph visualization results in Appendix E support this
interpretation, showing that regions like water, grass, and sky are not contiguously covered but instead exhibit sparse coverage.
This pattern may be analogous to a dithering effect used to represent continuous shading with binary values. A convolution
operation would efficiently reconstruct the full structure by locally propagating this summarized information, which is
supported by the ConvMLP results.

G. Image Retrieval
This section expands upon the image retrieval description in the main paper to provide additional implementation details
and supporting evidence. Our image retrieval framework is structured around two primary first-pass search methods: pooled
similarity and volumetric similarity. Both methods leverage the pooled embedding, which serves as the input to the classifier
head and integrates both pooled image features and expert edge features.

• Pooled Similarity (PS): This method computes similarity scores by comparing the pooled embeddings through a cosine
similarity metric. The pooled embedding serves as a generalized representation of each image, aligning with standard
vector-based similarity searches, making it both effective and efficient as a first-pass retrieval approach.

• Volumetric Similarity (VS): Unlike pooled similarity, volumetric similarity incorporates the hypergraph structure by
treating the pooled embedding as a centroid. Similarity is determined using an approximate Mahalanobis distance,
which accounts for the distributional spread around the centroid based on a subset of primary hyperedges. This approach
captures overlap with less prominent, yet relevant, features, enabling a spatially-aware similarity measure that aligns
more closely with nuanced structural characteristics.

Individually, both methods perform effectively as first-pass search strategies; however, to further harness the structure of the
hypergraph, we introduce an adaptive reranking phase. This phase refines retrieval results by re-evaluating similarity across a
short list of top R candidates, using a more detailed hypergraph similarity measure. The adaptive reranking can be applied to
each of the first-pass methods, resulting in Adaptive Volumetric Similarity (AVS) and Adaptive Pooled Similarity (APS). By
capitalizing on the hierarchical and relational information embedded within the hypergraph, these adaptive methods enhance
retrieval precision beyond the initial search.

G.1. Graph Pruning
For methods that leverage the hypergraph structure, we employ a pruned graph representation based on primary hyperedge
features (pE). The pruning process begins by selecting the top-1 expert edge as the root, which serves as the initial focus for
identifying key structural components. From this root, we identify the top M virtual vertices that contribute most significantly
to the expert edge. For each of these M virtual vertices, we further select the top N primary hyperedges connected to it.
This yields a total of M ×N hyperedge features, where we choose M = 3, N = 4, and M ×N = 12 to prove a balanced
between representation coverage and computational efficiency. Finally, the selected hyperedge features are deduplicated and
ranked based on their overall contribution to the final prediction. Notably, this process is very similar to the slice visualization
described in Appendix E, and illustrated in Fig. 9.

G.2. Volumetric Similarity
Volumetric similarity leverages the hypergraph structure by treating the pooled embedding x of each image as a centroid, with
the pruned primary hyperedges defining a spread around this centroid. Each of the two distributions can then be represented by
a centroid and covariance matrix, (x1,Σ1) and (x2,Σ2). We then quantify the similarity between these distributions using the
Mahalanobis distance with a combined covariance matrix, capturing both the central positions and spreads of the distributions
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to measure their overlap.

dM (x1, x2)
2 =

√
(x1 − x2)T

(
Σ1 +Σ2

2

)−1

(x1 − x2) (26)

where Σ = Σ1+Σ2

2 is the average covariance matrix between the two distributions. To reduce computational complexity,
we approximate Σ as a diagonal matrix, assuming minimal covariance between features. Each feature’s combined variance
simplifies to σ2 = (σ2

1 + σ2
2)/2, yielding:

dM (x1, x2)
2 ≈

∑
i

(x1,i − x2,i)
2

σ2
i

(27)

where σ2
i represents the average variance of the i-th feature across the two distributions.

While the diagonal approximation reduces complexity, calculating 1/σ2
i for each feature remains computationally demand-

ing. To further optimize, we approximate each variance term σ2
i ≈ σ̄2 + δ2i , where σ̄2 is the mean variance across features,

and δ2i represents the deviation from this mean. Finally, we can then express 1/σ2
i using a Taylor series expansion:

1

σ2
i

≈ 1

σ̄2
(1− ηi + η2i + . . . ), ηi =

δ2i
σ̄2

(28)

By truncating this expansion after the first few terms, we achieve an efficient approximation for the Mahalanobis, requiring
at most a single division per comparison:

dM (x1, x2)
2 ≈ ρ

∑
i

(x1,i − x2,i)
2(1− (ρ · δ2i ) + (ρ · δ2i )2), ρ =

1

σ̄2
(29)

This approach allows for efficient computation that remains relatively close to the simpler cosine similarity measure, while
also capturing greater variance introduced by the hypergraph structure.

In practical terms, while these approximations do not hold universally, the deviation is small enough that the simplified
form remains effective for our retrieval framework. When truncating the Taylor series to the first-order approximation the
term (1− ρ · δ2i ) must be clamped to a positive value, as large deviations in certain elements can cause this term to become
negative, violating the mathematical definition of variance. Notably, this clamping is unnecessary for the second-order
approximation, where additional terms sufficiently stabilize the variance without requiring this constraint.

G.3. Adaptive Reranking
The adaptive reranking process refines the initial retrieval results by re-evaluating a short list of top R entries selected
through one of the first-pass similarity methods. For each of these R entries, we perform a graph-based similarity search,
focusing on the pruned primary hyperedge features of each graph. The similarity is computed as the average distance between
corresponding primary hyperedges in the query and candidate graphs.

While effective, this approach can be computationally expensive, requiring O(R · (M ×N)2) operations, where M and N
represent the number of virtual vertices and primary hyperedges, respectively. However, the diversity regularization applied
during training ensures minimal overlap between comparisons, resulting in a sparse correlation matrix with mostly zero
similarities. This sparsity leads to redundant computations, making the process well-suited for optimization through hash-based
acceleration.

To take advantage of this sparsity, we employ a centroid-based hashing mechanism, which reduces the number of necessary
comparisons. Specifically, we learn a set of H centroids that define H distinct bins, with each primary hyperedge feature in
the pruned graphs (both query and candidate) hashed into these bins. By limiting comparisons to features within the same bin,
and only considering the top C most relevant comparisons (defined by the query graph), we can reduce the overall complexity
to O(R · C). This approach enables adaptive reranking to achieve higher precision with significantly reduced computational
costs, leveraging the sparse structure introduced by hypergraph regularization.

G.4. Centroid Hashing
To implement the hashing mechanism described in adaptive reranking, we learn a set of H centroids that define bins for
efficient similarity comparisons. Empirically, we find that setting H = 10 provides effective separation when M ×N = 12,
balancing coverage with computational efficiency.
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These centroids are trained using the Adam optimizer over a dataset created from all pruned primary hyperedge features
across the test dataset. The optimization objective involves minimizing the distance to the closest centroid while maximizing
the distance to all other centroids, thereby ensuring distinct and well-separated bins. Additionally, we incorporate the same
density regularization term applied to the expert edges, promoting a broader feature spread within each centroid bin. The
combined loss function is thus:

Lcentroid = ||y − cn1||2 − λICD · ||y − cn2||2 + λDEN · den(cn1) (30)

where y is the input feature vector, cn1 and cn2 are the nearest and second nearest centroids, λ is a loss weight factor, and
den(·) is the density regularization term computed over the batch. This objective minimizes the distance of each feature to
its nearest centroid, while enforcing a margin with the second-closest centroid. The regularization term further ensures that
centroids remain well-utilized across the feature space.

Emperically, we find that a learning rate of 4 × 10−3 works well for a batch size of 512, setting λICD = 0.1 and
λDEN = 0.5. In practice, centroid training converges rapidly, requiring only two epochs on larger datasets such as ImageNet
and CIFAR. For smaller datasets, such as Oxford and Paris, training requires approximately eight epochs.

G.5. Retrieval Hyperparameter Ablations
We evaluate the influence of four critical hyperparameters on retrieval performance: the number of centroids H , the number of
graph similarity comparisons C, the Mahalanobis approximation order, and the shortlist rank R used in adaptive reranking.
Results for H and C are presented in Fig. 15, while Fig. 16 highlights the effects of the Mahalanobis approximation order and
shortlist rank.
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Figure 15. Hyperparameter scaling behavior for adaptive re-rank method. (a) impact of hash bin clustering metrics as a function of centroid
count on CIFAR-100; (b) retrieval performance as a function of graph similarity comparisons for: (left) Oxford and Paris (right) and KNN
retrieval on ImageNet-100 with HgVT-Lt. Notably, Oxford and Paris are insensitive, likely due to reduced feature diversity from landmarks.

Effect of Centroid Count: Fig. 15a presents the relationship between H and final centroid training metrics. Namely we
use a diversity measure (1.0 represents uniform distribution among centroids), inter-cluster distance (ICD), and intra-cluster
similarity (ICS) for the HgVT-Mu model trained on CIFAR-100. Increasing H improves all metrics up to a point, followed
by a degradation due over granularization. We find that H = 10 achieves the best result for the chosen graph configuration
(N = 3 virtual vertices, M = 4 primary hyperedges), with a notable drop in ICD at H ≥ 12 = N ×M . This choice allows
the bins to remain distinct enough to provide adequate separation, while also providing sufficient overlap with an expectation
value of 1.2 hyperedges per bin.

Effect of Comparison Count: Fig. 15b illustrates the performance of varying C for the HgVT-Lt model, trained on
ImageNet-100, across different retrieval benchmarks. While the Oxford and Paris datasets exhibit insensitivity to C, potentially
due to their dependence on salient features emphasized by the diverse ImageNet-100 set, ImageNet-100 retrieval performance
peaks at C = 8. For computational efficiency, C = 4 is selected as a trade off, maintaining comparable mAP@10 performance
while requiring fewer similarity comparisons.

Effect of Mahalanobis Approximation Order: Fig. 16a examines the impact of the Mahalanobis approximation order
on volumetric similarity performance. Several configurations are evaluated, including point-wise approximation (where
the query variance is set to 0 and the full candidate variance is precomputed as 1/σ2

i ), as well as 0th, 1st, and 2nd order
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Figure 16. Hyperparameter scaling behavior for adaptive re-rank methods with HgVT-Lt trained on ImageNet-100. (a) impact of Mahalanobis
approximation order, showing point-wise, 0th, 1st, 2nd order, and full (N = ∞); (b) impact of short-list size R on metrics. In both figures:
(left) mAP retrieval on Oxford and Paris (right) and KNN retrieval for ImageNet-100. Also showing baseline using pooled similarity (PS) as
horizontal purple dashed line.

Taylor series approximations, and the full computation of 1/(σ2
1,i + σ2

2,i). Results indicate that the 0th order approximation
consistently achieves the best performance, balancing accuracy and efficiency by leveraging only σ̄2. Conversely, the 2nd
order approximation fails across all cases, likely due to instability from the (δ2i )

2 term becoming larger than 1, causing the
approximation to break down. These findings suggest that the simpler 0th order approach is both effective and computationally
optimal for volumetric similarity.

Effect of Shortlist Size: Fig. 16b explores the effect of shortlist size R on adaptive metric performance. Across all methods,
performance degrades as R increases, driven by confusion in the graph similarity metric, which becomes more susceptible to
distraction by sub-salient features. Despite this trend, a shortlist size of R = 100 strikes a suitable balance, limiting significant
distractions while maintaining enough candidates to sufficiently approximate the full mAP metric, which favors smaller k-rank
evaluations (mAP@k).

G.6. Visualizing Adaptive Reranking
This section provides a visual analysis of the adaptive reranking process using the Oxford dataset, demonstrating how structural
similarities in hypergraphs influence retrieval precision.

In Fig. 17, we present a test query image alongside two known positive images and two known negative images. For
each of these five images, we show the pruned hypergraph visualizations, including similarity scores for each of the primary
hyperedges. Notably, distinct structural patterns emerge in the similarity scores, with higher scores between the query and
positive images compared to the negative images. Additionally, we observe that the query edge rank in this example stops at 9,
while the test edge ranks extend to 12. This discrepancy arises because two of the primary hyperedges in the pruned query
hypergraph are duplicates, removed during deduplication, resulting in a total of 10 unique hyperedges.

Fig. 18 further illustrates the impact of adaptive reranking on retrieval quality for the Oxford Medium dataset. Using the
same query image from Fig. 17, we first display the top R = 100 images retrieved based on pooled similarity ranking. In this
initial retrieval, positive images are dispersed throughout the ranks, and several irrelevant images, including those without
buildings, appear near the top. Applying adaptive reranking significantly improves the results: positive images are shifted to
higher ranks, while irrelevant images are moved toward the end of the list. This visual evidence highlights the effectiveness of
adaptive reranking in refining retrieval results by leveraging hypergraph structural information to enhance semantic alignment.

20



(a) Query and Test Images.

(b) Pruned Query Hypergraph.

(d) Pruned Positive 1 Hypergraph.

(f) Pruned Negative 1 Hypergraph.
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(c) Aggregate Feature Similarities.

(e) Pruned Positive 2 Hypergraph.

(g) Pruned Positive 2 Hypergraph.

Figure 17. Example Revisted Oxford retrieval for query (Ashmolean Museum), with two positive and two negative results for HgVT-Ti. (a)
showing input images, (b) pruned hypergraph visualization for the query image, (c) aggregate hyperedge similarity scores, (d-e) pruned
hypergraph visualizations of the positive image pairs, (f-g) pruned hypergraph visualizations of the negative image pairs. All hypergraph
visualizations label the top-3 virtual vertices (vNode) and their corresponding top-4 primary hyperedges (pEdge). If a primary hyperedge
connects to multiple virtual vertices, this link is indicated by a unique marker other than solid black. In (c), the corresponding query (top)
and test hyperedge (bottom) coordinates are indicated by red numbers: as vNode,pEdge. For example: pEdge 47 in the query hypergraph
would be 2,1. In all cases, query pEdge 8 (2,0) has the highest similarity with pEdge 8 (1,0) in the test images.
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(a) Pooled Similarity Ranking. (b) Adaptive Pooled Similarity Ranking.

Figure 18. Top-100 ranking for the medium split of the query in Fig. 17 using HgVT-Ti. Showing (a) the results using pooled similarity
ranking, (b) after re-ranking the top-100 shortlist using pruned hypergraph similarity. Positive matches are shown with thick cyan boarders,
while negative matches use red boarders. The rank position is indicated by a number in the upper left corner of each image.

H. Additional Ablations
This section evaluates the design choices and hyperparameters shaping the performance and efficiency of the HgVT models.
The primary ablations are conducted on HgVT-Lt, trained on ImageNet-100, to analyze architectural trade-offs between
accuracy, computational cost, and model size. To explore the impact of population regularization hyperparameters more
comprehensively, we utilize a smaller model, HgVT-Mu, trained on CIFAR-100 (details in Appendix I). This allows for
detailed hyperparameter sweeps to assess their effects on graph quality, sparsity, retrieval performance, and inter-metric
correlations. Additionally, we investigate the influence of expert pooling regularization parameters using HgVT-Mu to better
understand their role in balancing sparsity and performance. Insights from these evaluations guide the selection of optimal
configurations and provide a deeper understanding of the underlying model behavior.

H.1. Population Regularization Sweeps
The population regularization mechanism facilitates learned self-sparsification and clustering within the generated hypergraphs.
It is defined by the population regularization minimum density (γ) and maximum density (β), with the regularization terms
encouraging soft adjacency membership contributions to remain within these bounds. A sweep of these parameters, normalized
to the vertex count |V| is presented in Fig. 19 for the HgVT-Mu model, comparing the standard Hadamard edge attention
modulation to the modified Hadamard edge attention modulation.

The results in Fig. 19 indicate that the modified Hadamard modulation consistently outperforms the standard approach.
This improvement aligns with expectations, as the modified modulation removes the positive influence of non-membership
vertices, thereby enhancing the accuracy of edge relationships. Both parameter grids form distinct performance landscapes,
revealing regions where over-sparsification occurs and others where structural collapse leads to a maximally connected
graph (sparsity = 0). Interestingly, top-1 accuracy and retrieval metrics generally favor the maximally connected case initially,
but performance begins to degrade beyond a certain point. This suggests that the metrics benefit from a weakly maximally
connected graph – characterized by softer membership weights – over a strongly maximally connected graph with more rigid
weights. However, while a maximally connected structure may boost certain metrics temporarily, it ultimately hinders precise
structural extraction and efficient computation, both of which rely on maintaining an appropriate level of sparsity.

To validate the findings from the HgVT-Mu model at scale, Fig. 20 presents a similar population regularization analysis for
the HgVT-Lt model, trained on ImageNet-100. This analysis uses a coarser parameter grid and focuses on Top-1 accuracy
and graph quality metrics. The results demonstrate a similar performance pattern to that observed with HgVT-Mu, but with a
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(a) Standard Hadamard Soft Membership Modulation.
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(b) Modified Hadamard Soft Membership Modulation.

Figure 19. Effect of population regularization minimum (γ) and maximum (β) density limits, for CIFAR-100. Regularization is normalized
by |V|, such that 1.0 corresponds to β, γ = |V|. Lower-right cell in each subplot represents population regularization disabled. Left,
showing top-1 accuracy and graph quality metrics hyperedge entropy (HE), silhouette score (SIL), intra-cluster similarity (ICS), inter-cluster
distance (ICD), and sparsity (spA). Right, showing mAP@10 for image retrieval and top-10 hit-rate with top-1 CLIP-B ranking for four
retrieval methods: standard, adaptive (A), volumetric overlap (V), and adaptive volumetric (VA). Further comparing (a) with standard
Hadamard (bounded between 0 and 1), and (b) with modified Hadamard (bounded between -1 and 1) modulation in edge attention.
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Figure 20. Effect of population regularization minimum (γ) and maximum (β) density limits, for ImageNet-100. Regularization is
normalized by |V|, such that 1.0 corresponds to β, γ = |V|. Lower-right cell in each subplot represents population regularization disabled.
Showing top-1 accuracy and graph quality metrics hyperedge entropy (HE), silhouette score (SIL), intra-cluster similarity (ICS), inter-cluster
distance (ICD), and sparsity (spA).

noticeable shift toward lower values of the normalized population minimum density (γ). Notably, the best results are achieved
when γ is maintained at an absolute value of 0.5, rather than scaling it with the vertex count |V|. This suggests that a fixed
minimum density is sufficient to ensure effective graph sparsity and clustering, even as the model scales, while also preventing
over-sparsification (sparsity → 1.0). In contrast, the population maximum density β benefits from scaling, with β = 1/6 · |V|
performing well across the Mu, Lt, and Ti scales. This configuration yields an average graph sparsity of approximately 30% to
60%, striking a balance between maintaining structural integrity and enabling efficient computation. These findings reinforce
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the generalizability of the population regularization framework across scales while providing practical guidance for selecting γ
and β values.

H.2. Correlation Analysis of Metrics
To further investigate the interactions between different metrics, we compute correlations across the HgVT-Mu population
regularization sweep for both the standard Hadamard and modified Hadamard modulation methods. These correlations are
visualized in Fig. 21, with graph quality metrics (HE, ICS, ICD, SIL, sparsity) analyzed in Fig. 21a and retrieval performance
metrics (mAP@10 and 1NN-hit@10 for PS, VS, APS, AVS) in Fig. 21b. Each plot includes a best-fit trendline alongside the
correlation coefficient and p-value to assess statistical significance.

Graph Quality Metrics: Top-1 accuracy shows weak correlations with all graph quality metrics, positively with hyperedge
entropy (HE) and negatively with all others, including sparsity. This supports the observation that maximally connected graphs
tend to yield better Top-1 performance. SIL is negatively correlated with HE and positively correlated with sparsity, suggesting
a trade-off between hyperedge feature variance and graph separation. Similarly, ICD is negatively correlated with HE, while
ICS and ICD exhibit no correlation with each other. Most other interactions between graph quality metrics are relatively weak.

Retrieval Metrics: All mAP@10 metrics are highly correlated with Top-1 accuracy, with AVS exhibiting the largest
variance. Adaptive methods (APS, AVS) are strongly correlated with their non-adaptive counterparts (PS, VS), while PS and
VS also display strong mutual correlation. These relationships highlight consistent dependencies between retrieval metrics and
Top-1 accuracy.

1NN-hit@10 Metrics: Acting as a proxy for semantic alignment with CLIP, the 1NN-hit@10 results reveal distinct
groupings based on modulation type, with the modified Hadamard method outperforming the standard method. Interestingly,
correlations in this category are generally weak, with the strongest observed between mAP@10 for the AVS method and
1NN-hit@10. This correlation is particularly notable when comparing VS and AVS within the 1NN-hit@10 metric. These
findings suggest that while retrieval metrics align well with accuracy, their connection to semantic alignment is more nuanced
and varies across methods.
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(b) Retrieval Accuracy Correlations.

Figure 21. Comparing structural correlations obtained by the population regularization sweep on CIFAR-100 from Fig. 19. (a) measuring
top-1 accuracy and intra-structural correlations; (b) showing structural correlations with image retrieval accuracy. Plotting both standard
Hadamard (blue) and modified Hadamard (orange) soft membership modulation. Correlation coefficients and significance p-values plotted
above each subplot, with correlation trendlines shown as gray-dashed lines.
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H.3. Expert Pooling Regularization

Expert pooling regularization is evaluated on the HgVT-Mu model trained on CIFAR-100, focusing on the cross-entropy (CE)
weight and logit noise injection strength. Fig. 23 examines these parameters, presenting Top-1 accuracy, expert diversity
(where 1.0 indicates uniform expert utilization), and expert entropy (lower values indicate higher confidence). A CE weight of
0.1 achieves a good balance, yielding confident routing and high accuracy. Without the CE weight, expert entropy increases
significantly, reflecting low-confidence routing that hinders performance. For logit noise injection, higher noise levels (10−1)
outperform label smoothing, improving both accuracy and diversity. This indicates that noise injection is a more effective
regularization strategy, avoiding the higher entropy associated with label smoothing.
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Table 13. Ablating Expert Edge pooling regularization meth-
ods for the HgVT-Mu model trained on CIFAR-100.

Density Loss
Label

Smoothing Dropout Top-1 Diversity Entropy

✓ ✓ ✓ 70.25 0.998 0.245
✓ ✓ ✗ 70.18 0.995 0.256
✓ ✗ ✓ 69.81 0.987 0.039
✓ ✗ ✗ 69.95 0.994 0.043

✗ ✓ ✓ 66.37 0.0 1.386
✗ ✓ ✗ 63.34 0.329 1.386
✗ ✗ ✓ 64.54 0.323 1.386

Figure 23. Parameter sweep of Expert Edge hyperperameters for HgVT-Mu trained on CIFAR-100. (a) Varying cross-entropy loss weight;
(b) varying logit noise injection strength with (LS=0.1) and without (LS=0.0) label smoothing. For both figures, showing top-1 prediction
accuracy, diversity (1.0 indicates equal distribution among experts), and selection entropy (lower indicates higher confidence).

Tab. 13 explores the combinatorial effects of diversity loss, label smoothing, and dropout regularization. Diversity
loss proves essential, preventing expert collapse and achieving the highest diversity metric. Label smoothing and dropout
individually have minor effects but, when combined, produce the best Top-1 accuracy and diversity results. However, label
smoothing increases entropy, potentially reducing confidence. This is mitigated by omitting label smoothing and using higher
logit noise instead, which preserves confidence while improving diversity and accuracy.

H.4. Repeated Blocks
Table 14. Effect of repeating the final block
on HgVT-Lt with a constant effective depth.

L Repeats Params FLOPs Top-1

12 0 6.62M 0.88G 82.23
11 1 6.23M 0.88G 82.65
10 2 5.74M 0.88G 81.92

We investigate the impact of repeating the final blocks in HgVT using the HgVT-Lt
model on ImageNet-100. Inspired by hierarchical feature extraction in pyramidal
models and the observed increase in sparsity with layer depth, we hypothesize
that most hypergraph processing occurs earlier in the network, with later blocks
primarily refining the structure. From this insight, we test whether repeating the
final block can reduce the overall parameter count without degrading performance.
Tab. 14 summarizes the results, confirming that repeating a single block maintains
performance, while reducing parameter count. Meanwhile, repeating twice results in a slight accuracy decrease, suggesting
that hypergraph refinement begins at the penultimate block. Notably, the FLOP count remains unchanged in all cases.

H.5. Additional HgVT-Lt Model Ablations

Additional ablations on the HgVT-Lt model trained on ImageNet-100 explore various structural configurations. Tab. 15 lists
these configurations, reporting their Top-1 accuracy, parameter count, and FLOPs. Fig. 24 visualizes the results, plotting
accuracy against FLOPs, with marker size representing model size. The Pareto frontier is highlighted, alongside comparisons
with ViG and ViHGNN, providing a reference point for FLOPs and parameter count.

The findings indicate that using split adjacency and feature matrices (Xadj ̸= X) improves performance. Allocating more
dimensions to the feature matrix than the adjacency matrix (df > da) strikes a balance between accuracy and computational
overhead. Using more attention heads with smaller key dimensions (dk = 32) outperforms fewer heads with a larger dimension.
Furthermore, sharing the same feed-forward network (FFN) between edges and vertices reduces parameters with minimal
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Table 15. Architectural Ablations for HgVT-Lt trained on ImageNet-
100. All experiments presented use average edge pooling.

Xadj = X Joint FFN L df da h dk Top-1 Params FLOPs

✗ ✗ 10 96 96 3 32 81.19 8.3M 1.3G
✗ ✗ 10 128 64 4 32 80.59 9.2M 1.5G
✗ ✗ 10 64 128 2 32 80.59 7.7M 1.1G
✗ ✗ 10 128 64 2 64 80.43 9.2M 1.5G
✗ ✗ 10 64 128 1 64 80.25 7.7M 1.1G

✗ ✓ 10 128 64 4 32 80.77 6.6M 1.5G
✗ ✓ 10 96 96 3 32 80.35 5.7M 1.3G
✗ ✓ 12 128 64 4 32 81.63 7.6M 1.7G
✗ ✓ 12 96 96 3 32 81.55 6.5M 1.5G

✓ ✗ 10 96 96 3 32 72.19 4.0M 0.6G
✓ ✗ 10 128 128 4 32 77.27 5.9M 1.0G
✓ ✗ 12 128 128 4 32 78.35 6.8M 1.2G
✓ ✓ 12 128 128 4 32 77.89 5.4M 1.2G
✓ ✗ 10 192 96 6 32 81.85 11.8M 2.0G
✓ ✗ 10 192 96 3 64 81.11 11.8M 2.0G
✓ ✓ 10 192 96 3 64 80.51 9.1M 2.0G

Figure 24. Showing ImageNet-100 classification accuracy vs forward compute (in FLOPs) for an architectural sweep of the HgVT-Lt model
using expert pooling. Parameter count is shown by marker size, where models larger than ViHGNN-Ti [17] are represented by squares rather
than circles. All FLOPs and Parameters are measured using the equivalent HgVT-Ti models on ImageNet-1k with expert pooling. Further
showing models with joined (X(∗)

adj = X(∗); orange), and split (X(∗)
adj ̸= X(∗); blue) adjacency features, along with the Pareto frontier.

accuracy loss. Several alternative configurations to the one chosen for HgVT-Lt are noted, offering trade-offs between
computational overhead and accuracy for future scaling considerations.

27



I. Implementation Details
All models were trained using PyTorch with automatic mixed precision, leveraging the PyTorch-Lightning framework. Vertex
self-attention was implemented efficiently using the xformers library [32], while edge attention utilized einsum operations
reodered for memory efficiency with torch.compile. The Timm library [58] was employed for data augmentation,
learning rate scheduling, and optimizer initialization, with the Fused AdamW optimizer from the Apex library [37].

Retrieval methods were implemented by storing precomputed features in HDF5 tables and conducting similarity searches
directly on the GPU via PyTorch. The pooled embeddings of the full database were compact enough to reside in VRAM,
enabling batch comparisons and efficient similarity sorting. Reranking computations were performed using Numpy on the
shortlist features, eliminating the need to store these features on the GPU and maintaining computational efficiency.

I.1. Training Hyperparameters
Table 16. Details of data augmentation parameters, common to all runs.

Parameter Value

Random Erase Mode Pixel
Random Erase Probability 0.25
Random Erase Count 1

Label Smoothing 0.1
Mixup α 0.8
CutMix α 1.0
Mixup Probability 0.8
Mixup Switch probability 0.5
Mixup Mode Batch

Repeat Augmentation Count 2

Color Jitter 0.4
Interpolation Mode Random
Random Scale Range [0.08, 1.0]
Random Aspect Ratio Range [0.75, 1.33]
Random HFlip Probability 0.5
Auto-Agumentation Config. rand-m9-mstd0.5-inc1
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Table 17. Details of training hyper-parameters.

Parameter \ Scale → Mu Lt Mi Ti S

Dataset CIFAR100 ImageNet-100 ImageNet-1k ImageNet-1k ImageNet-1k
Resolution 32 x 32 160 x 160 224 x 224 224 x 224 224 x 224
Parameters 2.90M 6.82M 5.83M 7.76M 22.94M
Fwd. FLOPS 0.15G 0.92G 1.39G 1.80G 5.48G

Optimizer AdamW AdamW AdamW AdamW AdamW
Peak Learning Rate 1e-3 1e-3 1e-3 1e-3 1e-3
Betas [0.9, 0.999] [0.9, 0.999] [0.9, 0.999] [0.9, 0.999] [0.9, 0.999]
Eps 1e-8 1e-8 1e-8 1e-8 1e-8
Weight Decay 5e-2 5e-2 5e-2 5e-2 5e-2
Gradient Clip 1.0 1.0 1.0 1.0 1.0

Training Epochs 400 200 300 300 300
Warmup Epochs 10 16 10 10 10
Global Batch Size 512 512 1024 1024 1024
Grad. Accum. Steps 1 1 1 1 2
Training Hardware 1x A6000 1x A6000 2x A6000 2x A6000 2x A6000
Precision bfloat16 bfloat16 bfloat16 bfloat16 bfloat16
Attn. Precision float32 float32 float32 float32 float32
Training Time 2 Hours 8 Hours 122 Hours 139 Hours 255 Hours

Depth (L) 10 12 8 12 14
Feature Dim (df ) 64 128 128 128 224
Adj. Dim (da) 64 64 64 64 96
Heads (h) 2 4 4 4 7
Joint FFN True True True True True
Xadj = X False False False False False

Patch Size 4 16 16 16 16
Image Verts. (|iV|) 64 100 196 196 196
Virtual Verts. (|vV|) 5 12 16 16 16
Primary Edges (|pE|) 8 32 50 50 50
Virtual Edges (|vE|) 4 6 8 8 8
Use Conv. Stem True True True True True

Stochastic Path Drop 0.1 0.1 0.1 0.1 0.1
Class Dropout 0.1 0.0 0.0 0.0 0.0
Drop Decay False True True True True
Pop Max (β) 10.05 20.7 36.04 36.04 36.04
Pop Min (γ) 0.5 0.5 0.5 0.5 0.5
λPOP 1.0 1.0 1.0 1.0 1.0
λDIV 1.0 1.0 1.0 1.0 1.0
λEXP 1.0 1.0 1.0 1.0 1.0

Pooling Method Expert Expert+Image Expert+Image Expert+Image Expert+Image
Expert Top-k 1 1 1 1 1
Expert λCE 0.1 0.1 0.1 0.1 0.1
Expert Noise 0.1 0.1 0.1 0.1 0.1
Expert Dropout 0.1 0.1 0.1 0.1 0.1
Expert Label Smoothing 0.0 0.0 0.0 0.0 0.0
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J. Macro-Class Clustering with Expert Edge Pooling
This section provides taxonomy trees illustrating the macro-class clusters formed by our proposed expert pooling method.
These clusters emerge as experts learn to select subsets of the hypergraph, revealing groupings aligned with high-level semantic
categories.To illustrate, we present clusters from two models: HgVT-Lt, trained on ImageNet-100, and HgVT-S trained on
ImageNet-1k. Given the reduced class count in ImageNet-100, the clusters for HgVT-Lt are more directly analyzable, whereas
the larger taxonomy of ImageNet-1k consists of a broader set of categories.

Class-to-expert assignments are determined by histograms aggregated over the respective validation sets and follow a 2/3
probability density rule: each class is assigned initially to its highest-probability expert, and subsequent experts are added if the
most recently added expert contains less than 2/3 of the remaining probability, until the total cumulative probability reaches
80%. For example, probability ranking [54%, 28%, 12%, 6%] would assign the first two experts, while [46%, 24%, 22%, 8%]
would assign the first three experts. This allocation method produces a pattern of mostly single-expert assignments, tapering
off with smaller groups assigned to two or more experts, which we visualize in the taxonomy trees in the following subsections.

J.1. HgVT-Lt on ImageNet-100
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Figure 25. Macro-class clustering for the first three expert edges of HgVT-Lt on the ImageNet-100 validation set. Nodes are shaded using
gray for intermediate nodes, and colored for leaf nodes as follows: (blue) grouped to a single edge, (red) split over two edges, (orange) split
over three edges, (green) split over four edges.
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Figure 26. Macro-class clustering for the second three expert edges of HgVT-Lt on the ImageNet-100 validation set. Nodes are shaded using
gray for intermediate nodes, and colored for leaf nodes as follows: (blue) grouped to a single edge, (red) split over two edges, (orange) split
over three edges, (green) split over four edges.

31



J.2. HgVT-S on ImageNet-1k
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Figure 27. Macro-class clustering for expert 0/8 of HgVT-S on the ImageNet-1k validation set. Nodes are shaded using gray for intermediate
nodes, and colored for leaf nodes as follows: (blue) grouped to a single edge, (red) split over two edges, (orange) split over three edges.
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Figure 28. Macro-class clustering for expert 1/8 of HgVT-S on the ImageNet-1k validation set. Nodes are shaded using gray for intermediate
nodes, and colored for leaf nodes as follows: (blue) grouped to a single edge, (red) split over two edges, (orange) split over three edges.
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Figure 29. Macro-class clustering for expert 2/8 of HgVT-S on the ImageNet-1k validation set. Nodes are shaded using gray for intermediate
nodes, and colored for leaf nodes as follows: (blue) grouped to a single edge, (red) split over two edges, (orange) split over three edges.
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Figure 30. Macro-class clustering for expert 3/8 of HgVT-S on the ImageNet-1k validation set. Nodes are shaded using gray for intermediate
nodes, and colored for leaf nodes as follows: (blue) grouped to a single edge, (red) split over two edges, (orange) split over three edges.
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Figure 31. Macro-class clustering for expert 4/8 of HgVT-S on the ImageNet-1k validation set. Nodes are shaded using gray for intermediate
nodes, and colored for leaf nodes as follows: (blue) grouped to a single edge, (red) split over two edges, (orange) split over three edges.
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Figure 32. Macro-class clustering for expert 5/8 of HgVT-S on the ImageNet-1k validation set. Nodes are shaded using gray for intermediate
nodes, and colored for leaf nodes as follows: (blue) grouped to a single edge, (red) split over two edges, (orange) split over three edges.
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Figure 33. Macro-class clustering for expert 6/8 of HgVT-S on the ImageNet-1k validation set. Nodes are shaded using gray for intermediate
nodes, and colored for leaf nodes as follows: (blue) grouped to a single edge, (red) split over two edges, (orange) split over three edges.

38



entity
physical entity

whole

organism

animal

vertebrate

bird

cock

diapsid
triceratops

ringneck snake

invertebrate

arthropod

trilobite
arachnid

scorpion
spider

black and gold spider
black widow

prairie chicken

African grey

mammal tusker

brain coral

crustacean
decapod crustacean lobster

American lobster
spiny lobster

crayfishisopod

king penguin

placental

dugong

dog

toy dog
Maltese dog

Blenheim spaniel

hunting dog

hound

basset
beagle

bloodhound
black-and-tan coonhound

foxhound
Walker hound

English foxhound
Ibizan hound
otterhound
Weimaraner

terrier

bullterrier
Staffordshire

American Staffordshire
terrierSealyham terrier

Boston bull
silky terrier

Lhasa

sporting dog
retriever

golden retriever
Labrador retriever

vizsla
setter

English setter
Gordon setter

spaniel Brittany spaniel
clumber

English springer
Sussex spanielworking dog

kuvasz
shepherd dog

briard
komondor

Old English sheepdogSennenhunde Greater Swiss Mountain
dog

Bernese mountain dog
Appenzeller
EntleBucher

boxer
bull mastiff
French bulldog
Saint Bernard

dalmatian
Newfoundland
Great Pyrenees

insect dung beetle
cicada

even-toed ungulate

hog
hippopotamus

primate
orangutan
baboon

elephant Indian elephant
African elephant

lionfish

artifact

consumer goods

clothing

garment

abaya

gown academic gown

instrumentality

device

musical instrument

wind instrument

accordion

stringed instrument

guitar acoustic guitar

apron

banjo

instrument
barometer

container

vessel barrel

equipment
ball

basketball

woodwind

beating-reed instrument
double-reed instrument

bassoon

bottle
beer bottle

beer glass

necktie

bolo tie

bow

covering
protective covering

breastplate

sweater
cardigan

bowed stringed
instrument cello

armor
body armor

chain mail

furnishing furniture
cabinet

china cabinet

cloak

lock combination lock

brass
cornet

cowboy boot

implement
crutch

cuirass

percussion instrument
drum

electric guitar

entertainment center

flute

forklift

French horn

overgarment
coat

fur coat

gong

gown

keyboard instrument

grand piano

harp

skirt hoopskirt
jean
jersey

marimba

medicine chest

microphone

miniskirt

oboe

organ

overskirt

padlock

pajama
panpipe

pay-phone

poncho

racket

home appliance
refrigerator

chair rocking chair

rotisserie

sarong
sax

shield

shower cap

shower curtain

soccer ball

stage

steel drum

stole
suit

sweatshirt

swing

throne

trench coat

trombone
vestment

violin

wardrobe

whiskey jug

wig

Windsor tie

wine bottle

matter vegetable head cabbage
artichokecarbonara

red wine

coral fungus

Expert 7

Figure 34. Macro-class clustering for expert 7/8 of HgVT-S on the ImageNet-1k validation set. Nodes are shaded using gray for intermediate
nodes, and colored for leaf nodes as follows: (blue) grouped to a single edge, (red) split over two edges, (orange) split over three edges.
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