
Supplementary Material

In the supplementary material, we give additional infor-
mation for our method. In Section 1 we provide more de-
tails on the thermalization including implementation details
and an extended ablation study. In Section 2, we add de-
tails on landmarker and label adaptation implementation. In
Sections 3-5 we discuss limitations and provide additional
result images of the datasets.

1. Thermalization
1.1. Reference Temperature Values
As described in the main document, we train two versions
of the thermalizer Tθ to model facial temperature variations
under different environmental conditions. For that purpose,
we use two sets of reference temperatures, a ‘cold’ and a
‘warm’ condition, for the different facial regions that guide
the segmentation-based regularizer. These are presented in
Table 1. Thermal facial contrast is increased and overall
body temperature is decreased for the ‘cold’ condition in
comparison to the ‘warm’ condition which is in line with
empirical findings [1].

Segmentation ‘Cold’ ’Warm’
Background, Glasses <20 <20
Skin 33 35
Nose 31.5 35
Eyes 34 35
Brows 31 34
Ears 32 35
Mouth Interior 35 35
Lips 32.5 35
Neck 34 35
Hair 30 30
Beard 31 32
Clothing 30 32
Headwear, Facewear 28 28

Table 1. Reference temperatures in Celsius for our segmentation-
based regularizer for the ‘cold’ and the ‘warm’ setup. Note that
our pixel range goes from 20 ◦C to 40 ◦C.

1.2. Thermalization Implementation Details
For the patch-based regularizers, we use random batches
with patch size of 8. We disregard the background by ex-

cluding synthetic patches based on the ground truth back-
ground segmentation and completely black real patches.
For our multi-scale approach, we sum the regularizer over 5
scales with a downsampling factor of 0.5. Again, facial tem-
peratures depend on the surrounding temperature. Thus, we
train a ‘warm’ and a ‘cold’ model with different reference
temperature values for the segmentation-based regulariz-
ers. For data augmentation, we use the same random rota-
tions and cropping for the natural RGB and thermal images.
Moreover, we apply random color changes, blurring, and
shadow augmentations [14] exclusively to the natural RGB
images. Next, we apply random rotations and cropping for
the synthetic RGB images. Here, we also fill holes in the
original ‘glasses’ segmentation masks showing outlines of
the frame only to highlight transparent, but heat-blocking
glass or plastic. Lastly, we replace the original background
with a black background based on the known semantic seg-
mentation. We use a U-Net Tθ with a Resnet34 encoder
pre-trained on ImageNet [3] and train it for 10 FAKE epochs
with SEJONG batches of size 64 and FAKE batches of
size 64. This corresponds to approximately 100 SEJONG
epochs. Further, we use an Adam optimizer with an initial
learning rate of 0.001 which we reduce to 0.0001 after 4
epochs. Based on a random split, we use 80% of the SE-
JONG data for training and all available FAKE data. Also,
we use the geomloss [4] implementation for the Wasserstein
patch loss with λE = 0.16. We normalize the squared er-
ror loss ∥ · − · ∥22 by dividing with the image dimension,
here 2562. Based on the 5 scales and patch dimension 82,
we set λW = 0.01C for our final model with the normal-
ization constant C = (5 · 82)−1. We set λR = 1. Note
that the choice of λR = 1 and C are motivated to control
the value range. The (normalized) MSE data fidelity term
∥ · − · ∥22 which we evaluate on normalized SEJONG im-
ages takes values in the range [0, 1] for arbitrary images
with pixel range [0, 1] due to dimensional normalization.
To have a similar value range for the evaluated FAKE im-
ages, the patch-based regularizer W takes values in [0, 1]
for λW = C with arbitrary normalized images. Moreover,
the segmentation-based regularizer R also takes values in
[0, 1] for such images given arbitrary normalized reference
temperature values in [0, 1] for λR = 1.
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1.3. SEJONG Dataset
The SEJONG dataset illustrates the impact of various dis-
guises, including glasses, wigs, and fake beards. Each sub-
ject in the dataset is presented with different disguises. As a
result, it includes a lot of clothing and hairstyle variations.
Most participants have a Southeast Asian or Central Asian
ethnic background, but people of other ethnicities are in-
cluded too. The number of participants identifying as male
or female is balanced. This makes it an attractive dataset
candidate for thermalization training that is supposed to
generalize to a large variety of subjects. Due to reasons
of data privacy, we refer to the original publication [2] and
have to abstain from showing additional SEJONG images.

1.4. Generalization to Out-of-Lab Conditions
The success of neural networks in the last two decades has
been tremendous, especially in the imaging domain. Nev-
ertheless, a common empirical finding is the limited capa-
bility of neural networks to generalize to new settings [16].
Often, this limitation is caused by biased datasets. Partic-
ularly in the biomedical domain, data acquisition is a valu-
able task. However, due to real-world restrictions, data is
often acquired in laboratory conditions. Acquiring paired
RGB and thermal facial images requires a calibrated mul-
timodal camera setup. Most multimodal facial datasets are
restricted to frontal views with relatively neural expressions
and frontal lighting, e.g. [2, 5, 17]. As a direct consequence,
most Thermal2RGB research has focused on learning the
transformation purely for frontal images with frontal light-
ing at room temperature [15, 20, 23]. To our knowledge, our
regularized model is the first facial model to promote the ex-
plicit generalization of a learned thermal transformation to
new poses, facial expressions, and lighting conditions and
to simulate distinct temperature conditions. However, due
to a lack of paired multimodal ‘in-the-wild’ facial datasets,
we have to partially resort to metrics for unsupervised im-
age translation, i.e., the FID [8]. To additionally visual-
ize this result, we show results for the TUFTS [17] dataset
containing RGB and thermal images. Again, we find that
paired RGB and images are only available for frontal views.
We present the results of applying our baseline model with-
out regularization (λW = 0, λR = 0), a Pix2Pix model,
and our final ‘cold’ model to the dataset subset with paired
RGB images in Figure 1. We chose the ‘cold’ model be-
cause the images were recorded at room temperature. We
see only a marginal impact of our regularization on the pre-
diction. However, the TUFTS dataset additionally contains
RGB images without paired thermal images recorded from
different angles. Therefore, we also apply both models to
random images taken from a fixed side angle. The result
is displayed in Figure 2. We see that the unregularized
model generates various large facial artifacts whereas our
final model contains almost no facial artifacts. This shows

Figure 1. Thermalization results for frontal RGB images with
paired thermal images from the TUFTS [17] database without reg-
ularization (λW = 0, λR = 0), Pix2Pix and our final model
(λW = 0.001C, λR = 1) (top to bottom).

Figure 2. Thermalization results for side RGB images without
paired thermal images from the TUFTS [17] database without reg-
ularization (λW = 0, λR = 0), Pix2Pix and our final model
(λW = 0.001C, λR = 1) (top to bottom).

that the main limitation of training RGB2Thermal and Ther-
mal2RGB models is the lack of paired ‘in-the-wild’ multi-
modal images. Our regularization allows us to overcome
this limitation.

1.5. Thermalization Comparison Details
We used the official PyTorch implementation for all com-
pared models. We trained Pix2Pix and all SEJONG images
and all unsupervised images using all ∼10k SEJONG im-
ages and 10k FAKE (RGB) images. We used default hyper-
parameters and trained all models for 10 epochs with a con-
stant learning rate and an additional 10 epochs with a lin-
early decreasing learning rate. All models were trained and
evaluated with a resolution of 256 for the FID and the MSE.
However, our models were evaluated on a resolution of 512
and the output was downscaled to 256 to be in line with
the final T-FAKE dataset. We display examples in Figure 3.
For the MSE comparison, we removed the background be-
cause we use random background augmentations for our fi-
nal landmarker training. Here, we removed the background



Figure 3. Comparison of FAKE images thermalized with Pix2Pix
[10], CycleGAN [24], CUT [18], QS-Attn [9], our supervised
baseline and our final model (top to bottom, background removed).

Figure 4. Thermal ground truth samples from the DRIVE-IN [5]
dataset with side profile.

by masking all predictions based on a 21 ◦C threshold based
on the ground truth. For the FID evaluation, we randomly
choose the ‘warm’ or the ‘cold’ variant for each image for
our model. For the MSE, we average the results for ‘warm’
and ‘cold’ variants. Due to data privacy reasons, we are only
able to present ground truth thermal images for two persons
from the DRIVE-IN dataset [5], see Figure 4.

1.6. Extended Thermalization Ablation Study
Given that the regularizers are solely defined for the syn-
thetic images, we fix λT = 1 to ensure that the regularizer
is on the same scale as the MSE of the real images and vary
λW for our ablation. We train all models with the same
setup and random seeds. The FID implementation is the de-
fault PyTorch-Ignite [6] implementation. Here, we extend
the ablation study table in the main document which only
displays the best result for λW = 0.01C. In particular, we
display the results of a grid search for λW and λR in Ta-
ble 2. As described in the main document, we calculate
the mean FID and its standard deviation for five different
subsets of the T-FAKE dataset. Moreover, we use the same

Figure 5. T-Fake samples with original images (first row), ‘cold’
images’ (second row), and ‘warm’ images’ (third row). Note the
diminished contrasts of the noses and the checks.

Regularization λR = 1 λR = 0

λW = 1C .1665 ± .0030 .3375 ± .0056
λW = 0.1C .1753 ± .0018 .3654 ± .0032
λW = 0.01C .1598 ± .0041 .3146 ± .0092
λW = 0 .1706 ± .0029 .5028 ± .0054

Table 2. Impact of the regularization parameters on the perceptual
quality measured with the FID (↓) with C = (5 · 82)−1.

setup to compare the perceptual quality of the ‘cold’ and the
‘warm’ setup of our final T-FAKE dataset, see Table 3. Fig-
ure 5 shows T-FAKE samples with the ‘cold’ and ‘warm’
variants. In addition, we present some samples generated
with different regularization configurations in Figure 6 for
the ‘cold’ setup and in Figure 7 for the ‘warm’ setup. Here,
we can visually see the impact of the different regularizers.

According to the FID, both regularizers have a positive
impact. The segmentation-based regularizer greatly boosts
the perceptual quality, while the effect of the patch-based
regularizer is smaller. The optimal FID value is obtained
for λW = 0.01C and λT = 1, the parameters of our final
model. The perceptual quality of the figures seems in line
with the FID. A closer look at the last two rows in both
figures shows that the segmentation-based regularizer alone
can lead to smoothed facial areas and overly exaggerated
differences on the edges of the semantic segmentation. This
becomes more apparent for the ‘cold’ setup as it leads to
more thermal contrast within the face, see Figure 6. The
FID shows only a small difference between the ‘cold’ and
‘warm’ variants. The ‘warm’ variant displays slightly lower
FID values. For a visual comparison of the T-FAKE images



Setup ‘Cold’ ‘Warm’
FID ↓ .1577 ± .0024 .1685 ± .0111

Table 3. Perceptual comparison of thermal setups ‘cold’ and
‘warm’ using the FID.

Figure 6. Regularization impact on images for ‘cold’ setup: No
regularization (λW = 0, λR = 0), only patch-based (λW =
0.01C, λR = 0), only segmentation-based (λW = 0, λR = 1),
and final model (λW = 0.01C, λR = 1) (top to bottom).

with real thermal images, we refer to Fig. 8.

2. Landmarking
2.1. CHARLOTTE Dataset
The CHARLOTTE dataset contains thermal images with
varying thermal conditions, various head positions, and
multiple camera distances. Moreover, it contains informa-
tion about the thermal sensation of the subjects. We refer
to Fig. 8 for a visualization of some thermal CHARLOTTE
images without landmarks.

2.2. Landmarking Implementation Details
For training, we include random landmark positions on a
texture dataset [7] as negative examples into the dataset to
increase the learned uncertainty σ2 on images without faces.
On thermal images, we fill in the background with random
textures from the texture dataset [7] with a probability of
0.25. During inference, we use a multi-scale sliding win-
dow evaluation to generalize our model to varying image
sizes and face scales. We downsample iteratively with a
factor of 0.75 until the height or the width reaches 224. For
each image scale, we run our model on sliding windows

Figure 7. Regularization impact on images for ‘warm’ setup: No
regularization (λW = 0, λR = 0), only patch-based (λW =
0.01C, λR = 0), only segmentation-based (λW = 0, λR = 1),
and final model (λW = 0.01C, λR = 1) (top to bottom).

Figure 8. CHARLOTTE image samples with different resolutions,
environmental conditions, and subjects.

of size 224 × 224 with a stride of 20. For our final land-
mark prediction, we pool all predictions and use the land-
mark with the smallest predicted standard deviation across
all scales and all sliding windows. For training the land-
marker Tψ , we finetune a model that has been pre-trained



Metric Method Training Dataset High Low Side Front Full

NME W/H ↓

GLL + RW (σ̄ < ∞) [21, 22] FAKE 0.1055 0.2675 0.1241 0.2534 0.1887
GLL + RW* (σ̄ < ∞) FAKE 0.0933 0.2682 0.1312 0.2348 0.1824
GLL + RW (σ̄ < ∞) T-FAKE 0.0832 0.1334 0.0677 0.1503 0.1090
GLL + RW (σ̄ < ∞) FAKE + T-FAKE 0.0740 0.1346 0.0684 0.1420 0.1051

Table 4. Ablation results on CHARLOTTE dataset splits. Pre-processing with the pre-processing stack for RGB landmarkers is indicated
by *. The confidence threshold has been set to infinity. RGB + Thermal (FAKE + T-FAKE) and Thermal Only (T-FAKE) models have
been finetuned from the FAKE models.

on the original FAKE dataset for the sparse landmarker for
the results in Table 4. During refinement, thermal images
are used with a probability of 0.4 split with equal probabil-
ity for ‘cold’ and ‘warm’ conditions. We finetune for 100
epochs with a learning rate of 0.0004, Adam optimizer with
weight decay, batchsize of 512 and OneCycleLR scheduler.
Our final model is trained for 4000 epochs, a learning rate
of 0.001 on FAKE and T-FAKE (p=0.4).
Augmentations details. We use of spatial augmentations,
including random shear, rotations, resizing, and cropping
to allow the landmarker to learn a large variation of face
orientations without the need for a dedicated face detector.
Specifically, we use geometric augmentations which apply
random rotations (up to ±45°) and random shear (±7°) to
both the image and landmarks, preserving geometric con-
sistency. In addition, a random resized cropping operation
is performed, with the cropped region size scaling between
40% and 200% of the original image and an aspect ratio
ranging between 3

4 and 4
3 . Furthermore, we use photomet-

ric transformations and random Gaussian smoothing. The
thermal images are randomly jittered to simulate tempera-
ture variations and thermal images are randomly inverted
with a probability of 0.1. Additionally, random noise is ap-
plied with a probability of 0.2 to simulate sensor noise. See
Figure 13 for image examples with augmentations applied.

2.3. Label Adaptation Implementation Details

Label Adaptation was trained for each method on the pre-
dictions on all detected faces on a random 1000 image
CHARLOTTE split. We train a model Tζ for 2000 epochs
with a learning rate 0.002, OneCycleLR and Adam opti-
mizer. As landmark augmentations, we apply random rota-
tion up to 45° as well as random shearing during training.
The label adaptation network is a five-layer perceptron with
fully connected layers that takes the predicted landmarks to-
gether with the resize factor as input. The latter accounts for
varying degrees of quantization at different image sizes in
the CHARLOTTE ground truth. The label adaptation gen-
erally handles even outlier predictions but can also contain
fail cases, (see Figure 10).
RGB Model Inference. We use two different pre-
processing approaches to include landmarkers solely devel-
oped for RGB images into the evaluation. Firstly, gray-

value images, where the temperature between 20° and 45°
is normalized and, secondly the pre-processing stack pro-
posed in [5]. The pre-processing stack consists of temper-
ature clamping between 20°C and 45°C, unsharp masking
with two sets of parameters with and without temperature
inversion. The reported landmarks are the averages over all
detected faces. This simple pre-processing stack is a sim-
ple method for boosting RGB landmarker performance for
thermal images [5]. As a result, we can include RGB land-
markers as a baseline for thermal landmarking models.

2.4. Landmarking Ablation Study
To study the impact of our thermal data, we report the
CHARLOTTE results of our landmarker trained with i)
RGB images only, ii) finetuned with thermal images and
iii) finetuned with both FAKE and T-FAKE. Again, we use
label adaptation for all variations. Table 4 shows the re-
sults. Training with the T-FAKE dataset significantly im-
proves the accuracy of thermal landmarking across all con-
ditions. In addition, multimodal training with the FAKE
and T-FAKE datasets leads to better thermal landmarking
performance than finetuning only with the T-FAKE dataset.

2.5. Inference Ablation
We analyze the impact of our inference strategy, see Table
5. We compare inference on i.) the complete image scaled
to 224 × 224 (whole image), ii.) followed by refinement
on a bounding box computed from the predictions obtained
with i.) and finally iii.) with the sliding window approach
described in the main document. Method iii.) produces the
best results over all images except for Charlotte low, where
ii.) performs slightly better while at the same time being
also suitable for real time estimation.

3. Large-Scale Visualization
For a large number of T-FAKE samples, we refer to Figures
11 and 12. Here, we simply use the first 128 images based
on the numerical naming convention of the original FAKE
dataset.

4. Thermal Semantic Segmentation Dataset
Note that by design detailed segmentation masks are avail-
able for all T-FAKE images. While the training of a se-



Facial alignment*Ground truth TFW SF-TL54 DlibAachen FAKE Baseline Ours sparse Mediapipe* Ours dense

Figure 9. Results on examples from the CHARLOTTE dataset [1] with different RGB and thermal predictors and our models. For images
without landmarks, no faces were detected. The performance of RGB methods can be greatly improved when the images are inverted or
sharpened indicated by *. The first column shows the limitations in the CHARLOTTE ground truth: profile annotation convention for
frontal views (1st row), quantization artefacts for low resolution images (4th row), translated annotations (last row).

Method Inference Time (ms) High Low Side Front Full

Sliding window (σ̄ < ∞) 88.73 0.0740 0.1346 0.0684 0.1420 0.1051
Refined bounding box (σ̄ < ∞) 10.41 0.0847 0.1329 0.0696 0.1494 0.1095
Whole image (σ̄ < ∞) 5.92 0.1091 0.1868 0.0842 0.2139 0.1490

Table 5. NME (W/H) (↓) for CHARLOTTE splits with different strategies for landmark computation. The final results are estimated with
sliding windows similar to [22], however, we achieved comparable results when computing the landmarks on input images rescaled to
224× 224. Here, we do not exclude high-uncertainty images and evaluate all images without failure rate, i.e., σ̄ < ∞. Average inference
time per frame on the Full split has been benchmarked on a single NVIDIA H100 80GB GPU with a batch size of 1.

mantic segmentation model was out-of-scope for our work,
we want to highlight the fact that our dataset can also be
used for such training. The possibility of such segmentation
training with synthetic data has already been demonstrated
by Wood et al. [21].

5. Limitations

Thermalization. This work depends on the thermaliza-
tion of the final renders in the FAKE dataset. The dataset
contains very difficult lighting conditions and scene com-
positions that make it powerful to train landmarkers but
also made the thermalization particularly challenging and
could only be solved with advanced domain-adaptive semi-
supervised regularization approaches. Despite a good per-
ceptual result of the faces, some T-FAKE images can con-
tain minor artifacts on clothing and on the background (e.g.
see Figure 7, bottom second from right). Nevertheless,

these artifacts remain limited. Moreover, background ar-
tifacts can easily be removed by choosing a suitable back-
ground based on the ground truth segmentation as imple-
mented during our landmarker training, see Fig. 13. We
merely used an MSE loss for our supervised training. In-
cluding an adversarial [10, 23] or a perceptual [11, 19] loss
into our model might lead to perceptual improvement.
Dense Landmarks. In this work, we relied on the ground
truth 70-point landmarks of the FAKE dataset [21] and
dense Mediapipe [13] annotations. Training with the origi-
nal 320- and 702-point landmarks could further boost accu-
racy and lead to an even denser landmarker. However, these
landmarks are not publicly available. Furthermore, we only
evaluate a mobilenet backbone for landmark detection with-
out face tracking. Better performance for difficult poses and
face variability could be achieved with denser models [22]
and spatial normalization of face positions during training.
CHARLOTTE. The CHARLOTTE [1] dataset is among



the largest datasets with thermal recordings of faces that
contain different levels of image quality as well as has a
high variability in poses such as side profile pictures and
tilting which makes the dataset ideal as a benchmark. How-
ever, the 2D annotation uses a convention where side profile
images have a different number of landmarks than frontal
faces. Furthermore, landmarks of low-resolution images are
quantized and there are examples of shifted ground truth an-
notations (see Figure 9).
Label Adaptation. We retrain the label adaptation net-
works for each tested landmarker on its original predictions.
Hence, for a given method, a high failure rate on CHAR-
LOTTE means that fewer training images are available for
that method. Also, poor predictions on some of the images
such as profile images without failure produce a low quality
of adapted landmarks (see Figure 10, TL54 dlib, column 3).
It is important to note that the label adaptation does not use
visual information from the benchmark dataset to translate
landmarks. However, the same individuals were present in
both the test and the training datasets which might allow
networks to learn facial statistics of individuals. This might
give an advantage to landmarkers with only a few land-
marks, e.g., TFW [12] (see Figure 10, TFW). The good 68-
point landmark performance of TFW on the CHARLOTTE
dataset does not necessarily mean that this generalizes and
the advantage of increasing the number of predicted land-
marks has been demonstrated for RGB images [22].
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Figure 11. The first 128 FAKE (with removed background) and T-FAKE images with a random choice between the ‘cold’ and the ‘warm’
variant.



Figure 12. The sparse landmarks for the T-FAKE images in Fig. 11



Figure 13. Example images from FAKE and T-FAKE with the augmentations applied during training.
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