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Supplementary Material

We present additional results, analyses, and experiments
to support our study. First, we detail our validation of the
ground truth using terrain measurements and manual verifi-
cations in Sec. A. Next, we provide further results in Sec. B,
including new analyses, qualitative illustrations, and experi-
mental settings. We then conduct a detailed ablation study in
Sec. C to examine the influence of key hyperparameters and
design choices. Additionally, we offer a comprehensive de-
scription of the dataset and its construction in Sec. D. Finally,
we provide the Datasheet for Dataset [1] for our benchmark.

A. Validation with Field Measurements
Ensuring the accuracy of our ground truth data is crucial for
the validity of any computer vision benchmark. While the
ALS data from LIDAR-HD have been calibrated and vali-
dated internally by the French Mapping Agency (IGN) using
plots annotated by the National Forest Office (ONF), we
performed additional manual verifications to further confirm
their reliability, performed at plot-level and tree-level.

Focused Plot-Level Assessment. We sourced measure-
ments from 135 plots, each with a 15 m radius, across the
Vosges region. These plots were measured in the field by
forestry experts from the National Forest Inventory (INF)
within two years of the ALS acquisition. For each plot, we
compared the height of the tallest tree measured in situ with
the maximum canopy height in the plot as estimated by the
ALS data and predicted by our best-performing computer
vision model (PVTv2). As shown in Fig. A and detailed
in Fig. A, the ALS-derived heights exhibit smaller errors
compared to our model’s estimates and align closely with
the field measurements. This validation confirms the suit-
ability of the ALS data as ground truth for our open-access
benchmark.

Country-Scale Plot Assessment. To evaluate performance
at a national scale, we extended our assessment to 5,323 plots
spanning the entire French metropolitan territory. Because
this coverage exceeds the current ALS coverage of France,
we only compare the best model’s predictions against field
measurements. As illustrated in Fig. B, the strong corre-
lation between predictions and measurements confirms the
model’s accuracy with an alternative reference. We also
report metrics comparing the algorithm’s outputs against
both ALS ground truth and manual field measurements. The
agreement between these two ground truths further validates
our experimental evaluation protocol.

Tree-Level Assessment. We extended our validation to
the individual tree level using data provided by the ONF,
consisting of 44 geolocated trees in the Grand Est region.
For each tree, we compared the measured height with the
highest estimated or predicted height within a 1.5 m radius
around the tree’s center. The metrics presented in Tab. A
corroborate the plot-level findings, further validating the
ALS-derived heights. This validation process emphasizes
the reliability of our ground truth data, which is essential
for advancing computer vision methods in canopy height
estimation.

Change Dataset Curation. To ensure the quality and ac-
curacy of the Open-Canopy-∆ benchmark, we conducted a
thorough manual validation of the dieback areas constitut-
ing its ground truth. As detailed in Section 4.1, each of the
73 change areas was carefully examined and validated by a
forest expert. This meticulous process guarantees the relia-
bility of the dataset for challenging computer vision tasks
involving canopy height change detection. An example of
visual annotation from this validation process is shown in
Fig. D. Some false positives were identified, likely due to
selective logging activities occurring between the ALS and
SPOT acquisitions within the same year.

B. Additional Results
We present several additional analyses of the performance
of our models. First, we provide additional qualitative illus-
trations in Sec. B.1. Then, we offer a detailed analysis of
how tree height influences the quality of the results Sec. B.2.
Finally, we re-evaluate our models and other products at
different resolutions (Sec. B.3), providing a fair comparison
in settings more advantageous to coarser predictions.

B.1. Qualitative Illustrations
We provide here additional illustrations for qualitative as-
sessment.

Canopy Height Fig. C showcases a comparison between
the ALS-derived canopy height map and the height map
predicted by our model using SPOT images. Our model
demonstrates the ability to accurately estimate vegetation
height across a variety of challenging scenarios:

• Mountainous Areas (first row): Capturing complex
terrain and varied vegetation.

• Agricultural Lands (second row): Detecting small
hedges and understory vegetation.
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Figure A. Plot-Level Quantitative Evaluation. We compare the plot-wise maximum heights as measured through ALS or predicted by a PVTv2 model
against the manual field measurements.
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Figure B. Country-Scale Plot-Level Evaluation. Left, we compare the plot-wise performance of our best model compared to field measurement maximum
heights. Right, we compare the precision of the model when measured against canopy height derived from ALS or field measurements. This study is
performed for 5323 plots spread across France.

• Dense Forests (rows 3 and 4): Handling thick canopy
cover and shadowed regions.

• Urban Environments (row 5): Distinguishing trees
amidst buildings and infrastructure.

• Mixed Scenes (rows 6 and 7): Managing heteroge-
neous landscapes with multiple land cover types.

The high spatial resolution of our predictions not only cap-
tures fine-grained details but also enables the identification
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Figure C. Canopy Height Estimation Illustrations. We select seven areas of interest and represent the available VHR image ((1)), the vegetation mask used
for evaluation ((2)), the ground truth ALS-derived height map ((3)), and the height map estimated with PVTv2 model from the VHR image ((4)). Scale and
orientation are shared across all subfigures.



Table A. Tree-Level Quantitative Evaluation. We compare the precision of ALS and a PVTv2 model when taking the field measurements as ground truth.

MAE (m) nMAE (%) RMSE (m) Bias (m)

ALS vs Field measurements 1.45 6.7 2.0 0.22
PVTv2 vs Field measurements 4.0 15.4 5.1 -3.2
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Figure D. Visual Validation of Change Components: Example of a pair of successive VHR images and the corresponding change maps (derived from
differences in ALS-based canopy height). We highlight the contours of the change masks validated by forestry experts through visual inspection.

of man-made features such as forest paths, which are crucial
for forest management applications.
We further compare the performance of three models in-
Fig. E: a standard Vision Transformer (ViT) and two hierar-
chical models, PVTv2 and SWIN. The hierarchical models
exhibit significantly lower errors, which corroborates our
quantiative results.

Canopy Height Change We provide additional illustra-
tions of height change detection in Fig. F. While our model
tends to over predict small growth or loss of canopy height,
the areas of strong disturbances—as denoted by our smoothed
and filtered binary change maps—are overall well detected
and delineated. Our illustration covers areas of dense forests
(first row) and mixed scenes (row 2 and 3). Our method can
detect disturbances such as clear and selective cuts.
Note that the Sentinel-derived height maps for 2022 and
2023 were provided by the authors of [2], as only the map
for 2020 is available online.

B.2. Influence of Tree Height
We analyzed the performance of our canopy height estima-
tion model across different ranges of true tree heights to
understand how tree height influences prediction accuracy.
The results are summarized in Tab. B.

• Note that the nMAE (normalized Mean Absolute Er-
ror) is computed for all ranges as the average of the

pixel-wise normalized absolute error:

nMAE =
|(ztrue − zpred)|

1 + ztrue
, (A)

where ztrue and zpred are respectively the ALS-derived
and predicted height for a given pixel. The additional
1 term in the denominator makes this measure more
robust for pixels corresponding to low vegetation.

• When computing the nMAE for the overall range of
0–60 m, we exclude the 0–2 m bin. This exclusion
is necessary because values in this range can produce
disproportionately large errors due to the normaliza-
tion, which can dominate the metric and skew the
results. Additionally, including this bin may unfairly
disadvantage models with lower spatial resolutions
that aim to predict the highest value within larger pix-
els, potentially overlapping with bare soil at higher
resolutions.

As shown in Tab. B by the bias of our model for different
ranges, our model tends to over-predict the height of small
trees and under-predict the height of tall trees. While the
average error is higher for larger trees, our model has the
lowest nMAE for the 20-30m range, with a value of 12.1%.

B.3. Evaluation at a resolution of 10m
To provide a fair comparison with models predicting canopy
height at a 10 m resolution, we resampled both our ground
truth and predicted height maps to a 10 m grid and re-
evaluated all available models. We performed this by aggre-
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Figure E. Difference Maps: Per-pixel absolute (top row) and relative (bottom row) errors for three models: ViT-B, PVTv2, and SWIN. While the differences
between PVTv2 and SWIN are subtle (approximately 20cm on average), the advantage of these models over ViT-B is visible.

Table B. Canopy Height Prediction Per Height Bins. We report the metrics for different bins of true tree height for the PVTv2[3] model.

Range in m 0-2 2-5 5-10 10-15 15-20 20-30 30-60 0-60

MAE in m 1.67 2.29 2.65 2.70 2.61 3.00 5.52 2.52
nMAE in % 138.8 53.6 32.1 20.3 14.3 12.1 16.0 22.9
RMSE in m 4.31 3.67 3.69 3.60 3.53 4.19 7.56 4.02
Bias in m 1.49 0.87 0.65 0.21 -0.42 -1.90 -5.31 0.00
Tree cov. IoU (%) - 72.6 96.5 99.3 99.7 99.8 99.6 90.5

gating the higher-resolution data as follows:
For each 10 m pixel, we took the maximum value from the
overlapping 1.5 m pixels. This approach is equivalent to
rasterizing the full ALS 3D point cloud directly onto a 10 m
grid. Taking the maximum value aligns with models trained
to predict metrics like GEDI RH100 or RH95 (relative height
at the 100th or 95th percentile), which represent the tallest
canopy elements within a pixel.
We report the results in Tab. C, and observe a similar or-
dering than in Table 3 of the main paper. All methods see
improved metrics as the problem is simpler, except for Tolan
et al. In particular, the tree coverage problem becomes sig-
nificantly easier at this resolution, with all 10 m-resolution
methods nearing 90% IoU. Note that the height map of [8]
at a resolution of 3m was provided directly by the authors
and is not available online.

C. Ablation Study
We propose an analysis of the influence of several of our
hyperparameters and design choices.

C.1. Parameters of the Change Detection
We evaluate how different configurations of the ground truth
binary change map affect canopy height change detection.
Specifically, we examine: (i) Minimum Height Difference:
The threshold for considering a pixel as having a significant
change in canopy height; (ii) Minimum Contiguous Change
Area: The smallest area of connected changed pixels consid-
ered significant.
Tab. D presents the IoU metrics for various combinations of
these parameters. Naturally, focusing on larger change areas
simplifies the detection problem due to reduced complexity.
The influence of the minimum tree height change threshold
is less straightforward; higher thresholds require precise de-
tection of significant height reductions, which can be more
challenging. Our chosen parameters—15 m minimum height
difference and 200 m2 minimum change area—represent
changes that are visually detectable between images (see
Fig. F), providing a realistic yet challenging task for com-
puter vision models. 01

C.2. Impact of Initialization Strategy
We provide in Tab. E the results of ablation experiments. We
evaluate the impact of omitting the near infrared (NIR) band



Table C. Canopy Height Prediction at 10m resolution. We resample all ground truth and predicted maps on a 10 m grid.

Map Backbone Initial res. MAE nMAE RMSE Bias Tree cov.
in m in m in % in m in m IoU in %

Potapov [4] UNet 30 6.17 44.6 8.33 -3.31 80.2
Schwartz [2, 5] UNet 10 4.00 26.9 5.28 -1.38 90.1
Lang [6] CNN 10 8.64 92.9 29.25 6.27 90.1
Pauls [7] UNet 10 4.59 32.9 5.96 0.34 90.1

Liu [8] UNet 3.0 4.58 37.4 10.97 -1.26 88.2
Tolan [9] ViT-L 1.0 6.10 42.1 7.95 -5.37 81.6

Open-Canopy UNet 1.5 2.72 19.0 3.95 -2.06 93.4
Open-Canopy PVTv2 1.5 2.42 17.6 3.57 -1.69 93.3

Table D. Canopy Height Change Detection We compute the IoU metric (in %) for various minimum height difference (row, in m) and minimum contiguous
area of change (column, in m2). The values chosen in the benchmark are underlined.

min
diff

min
surf

10 m2 25 m2 100 m2 200 m2 300 m2 400 m2

-5 m 7.0 7.1 7.2 6.2 5.2 4.2
-10 m 17.1 17.9 22.6 23.6 25.1 28.7
-15 m 22.1 23.4 28.8 37.0 40.6 40.8
-20 m 18.9 20.2 31.4 36.6 31.8 31.5

from input images. We can see in Tab. E that removing the
NIR channel from input images decreases the performance
for both UNet and PVTv2 backbones. Moreover, we as-
sess various initialization strategies for fine-tuning networks
initially trained only on RGB data to accommodate an ad-
ditional NIR channel. Those include training from scratch,
randomizing the first layer, and using LoRa. In Fig. J we
show the results for different LoRa ranks and show only the

best rank (32) in Tab. E. We see a clear benefit in using our
proposed initialization scheme.

D. Dataset description
We describe here in details the dataset used in Open-Canopy
and provide information about its constitution.

Table E. Ablation Study. We evaluate the impact of omitting the NIR channel from input images and assess various initialization strategies for fine-tuning
networks initially trained only on RGB data to accommodate an additional NIR channel.

MAE (m) nMAE (%) RMSE (m) Bias (m)

Channels backbone pretraining

RGB UNet ImageNet1K 2.77 24.8 4.34 -0.17
RGB+IR UNet ImageNet1K 2.67 23.8 4.18 -0.30

RGB PVTv2 ImageNet1K 3.73 32.6 5.53 -0.50
RGB+IR PVTv2 ImageNet1K 2.52 22.9 4.02 0.00

Initialization backbone pretraining

Fully random 11.17 85.77 14.38 -10.94
Rand. 1st layer 2.87 24.3 4.24 -0.04
LoRA (rank 32) 3.64 32.8 5.40 -0.27
Proposed

PVTv2 ImageNet1K

2.52 22.9 4.02 0.00



D.1. Access
• The dataset and model weights are hosted at [URL]

with download and usage instructions at [URL].
• The data is governed by the Open License 2.0 of

Etalab (https://www.etalab.gouv.fr/wp-
content/uploads/2018/11/open-licence.
pdf).

• Codes for data preprocessing, training models and
evaluation are available at [URL].

D.2. Statistics
We provide here the additional details on the dataset.

• Compositing: Our dataset relies on DINAMIS, which
provides one SPOT image per location each year. The
LiDAR-HD supplies a single airborne LiDAR acquisi-
tion per area across the entire country. Consequently,
no compositing is needed.

• Pairing SPOT and ALS: We pair SPOT and LiDAR
data from the same year to create height annotations,
resulting in a median difference of 61 days. We pro-
vide in Fig. G the temporal distribution of acquisitions.

• Data Distribution: Each tile represented in Fig 2 is
entirely featured in our dataset. The spatial distribu-
tion of canopy heights and tree covers per tiles are
illustrated in Fig. H and Fig. I.

D.3. Composition
We describe here the organization of the dataset. See Sec-
tion E for details on how the dataset was prepared.
The dataset is organized in the following way:

• The folder canopy_height contains data for canopy
height estimation.

• The folder canopy_height_change contains data
for canopy height change estimation.

The composition of the canopy_height folder is the fol-
lowing:

• The file geometries.geojson stores a list of
95,429 1km2 square geolocated geometries, giving
access to the splits of the dataset. It can be loaded
using the python package geopandas 1. Each ge-
ometry designates either a train, validation, test or
buffer area. This information is stored in the column
split. There are 8,046 buffer tiles, 66,339 train
tiles, 7,369 validation tiles and 13,675 test tiles. Ad-
ditionally, each geometry is associated to a year (cor-
responding to the year of the corresponding LiDAR
acquisition), stored in the column lidar_year.

• The file forest_mask.parquet stores geolocated
geometries of forests’ outlines. It can be loaded using
the python package geopandas. The parquet format is
used to accelerate loading time.

1 https://geopandas.org/en/stable/

• Each folder 2021, 2022 and 2023 contains three files:
– spot.vrt is a geolocalized virtual file that gives ac-

cess to SPOT 6-7 images stored in the subfolder
spot. It can be accessed through Qgis software
2 or python rasterio library 3 for instance. It has
the same extent as the geometries of the associ-
ated year.

– Similarly lidar.vrt gives access to ALS-derived
(LiDAR) canopy height maps stored in the sub-
folder lidar.

– Similarly lidar_classification.vrt gives
access to classification rasters stored in the sub-
folder lidar_classification.

The composition of the canopy_height_change folder
is the following:

• The file spot_1.tif is a geolocalized image ex-
tracted from SPOT 6-7 images in the year 2022 in the
area of Chantilly, France.

• The file spot_2.tif is a geolocalized image ex-
tracted from SPOT 6-7 images in the year 2023 in the
area of Chantilly (France).

• The file lidar_1.tif is a geolocalized ALS-derived
height map in the year 2022 in the area of Chantilly
(France), derived from LiDAR HD [10].

• The file lidar_2_m.tif is a geolocalized ALS-
derived height map in the year 2023 in the area of
Chantilly (France), provided by [11], at a resolution of
1m, with height in meters, and covering only forests.

• The file predictions_1_m.tif is a geolocalized
height map predicted by a PVTv2 model in 2022 in
the area of Chantilly (France), in meter unit.

• The file predictions_2_m.tif is a geolocalized
height map predicted by a PVTv2 model in 2023 in
the area of Chantilly (France), in meter unit.

• The file lidar_classification.tif is an ALS-
derived classification raster in 2022 in the area of
Chantilly (France).

• Additionally, files that follow the following pattern
*_masked.tif designate images masked on the ex-
tent of the available ALS data for 2023.

• The file change_mask_delta_15_surface_200_
annotated.geojson can be loaded with geopan-
das and gives access to geometries detected as "change"
for a minimum height difference of 15m and a min-
imum surface of 200m. We also provide manual an-
notations of detections in the column "Rating", where
"true" indicates a true positive and "false" a false posi-
tive.

2 https : / / www . qgis . org / en / site/3
3 https://rasterio.readthedocs.io/en/stable/

https://www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf
https://www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf
https://www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf
https://geopandas.org/en/stable/
https://www.qgis.org/en/site/
https://rasterio.readthedocs.io/en/stable/
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Figure F. Canopy Height Change. We consider VHR images taken in 2022 and 2023 in Chantilly Forest: (1) and (5), and use ALS observations of the same
years to derive a canopy height change map (2). We compare this map to the ones predicted by a PVTv2 model (3) and by a model from Schwartz et al.
trained on Sentinel data [2]. We also compare the binary change masks derived from ALS measurements (6) and from predicted change maps: (7) and (8).
Scale and orientation are shared across all subfigures.
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D.4. Characteristics
• We provide SPOT 6-7 images, ALS-derived height

maps and classification rasters covering 95,429 km2

(including a "buffer" area of 8046 km2, a train area
of 66,339 km2, a validation area of 7,369 km2 and a

test area of 13,675 km2). Each image has a resolution
of 1.5m, with one annotation per pixel, for a total of
42,455,312,381 annotations.

• Additionally, we provide SPOT 6-7 imagery, ALS-
derived height maps and a classification raster on the
Chantilly forest area for 2022 and 2023 (166 km2).

• The Open-Canopy dataset is derived from a larger
dataset of SPOT 6-7 acquisitions across the full metropoli-
tan French territory between 2013 and 2023 4, and a
larger dataset of ALS acquisitions from the IGN cam-
paign that started in 2021 and aims at covering the
full metropolitan French territory (LiDAR HD) 5. The
Open-Canopy dataset focuses on domains that are rep-
resentative of the diversity of French forests and where
LiDAR HD is available at the time of writing, with
the goal of limiting the dataset’s size to approximately
300 GB, in order to facilitate its usage by the machine
learning community.

• Each SPOT image is at a resolution of 1.5 m per pixel,
and features 4 spectral channels: red, blue, green, and
near-infrared.

• Each height map image is at a resolution of 1.5 m per
pixel, and features 1 channel (height in decimeters ex-
cept if notified in the filename in the following format:
"<name>_<unit>.tif").

• Each classification image is at a resolution of 1.5 m
per pixel, and features 1 channel (classification [12]
for a description of classes). Forests’ outlines are
stored as geometries in a parquet file. A Python util-
ity is provided to create a vegetation mask from the
classification raster and the forests’ outlines.

E. Dataset preparation
E.1. Splits
Our sampling strategy is semi-automated and proceeds as
follows:

• SPOT images were associated to LiDAR height maps
of the same year and geolocation (each LiDAR height
map corresponds to a 1km2 geolocalized square tile,
referred to as “geometry” in the following).

• Geometries on overlapping areas between spot full
images were removed.

• Geometries that had more than 100 zeros on the first
spot band (e.g., on edges of a full spot image) were
discarded to avoid tiles with missing data.

• Test geometries of 1km2 were sampled (with a fixed
seed) to form contiguous squares of 7km2 and to cover
20,000 km2.

• Test geometries that overlapped each other were dropped.
• Test geometries that covered different years in terms

4 https://openspot-dinamis.data-terra.org
5 https://geoservices.ign.fr/lidarhd

https://openspot-dinamis.data-terra.org
https://geoservices.ign.fr/lidarhd
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Figure J. LoRa Fine-Tuning of PVTv2. We fine-tun PVTv2 using LoRa for different rank. To allow the network to adapt to the NIR modality, we still train
the first layer fully. The best results, obtained with rank = 32, are noticeably inferior to a fully fine-tunned PVTv2

of LiDAR acquisitions were dropped.
• This process resulted in a total test area of 13,675 km2.
• A buffer of 1km was applied around each test area of

7km2.
• Validation and train geometries were randomly sam-

pled (with a fixed seed) among the remaining geome-
tries, with a proportion of 10% for validation and 90%
for training.

• This process resulted in a training area of 66,339 km2

and a validation area of 7,369 km2.

E.2. SPOT 6-7 satellite imagery
• The aerial images are sampled from the DINAMIS

6 collection. This collection consists of an annual
mosaic of selected tiles taken by SPOT 6-7 satellites
between March and October of each year between
2013 and 2023, covering the entire French metropoli-

6 https://openspot-dinamis.data-terra.org

tan territory. All images are orthorectified by IGN
and mapped onto a unified cartographic coordinate
reference system (Lambert 93). Each tile consists of
an image with four spectral bands: red, green, blue,
and near-infrared at a resolution of 6m, and an image
with one panchromatic band at a resolution of 1.5m
that can be downloaded separately.

• A total of 52 pairs of spectral and panchromatic im-
ages were downloaded from the DINAMIS website,
for each year from 2021 to 2023, to cover a very di-
verse range of forest types in areas where LiDAR HD
was available at the time of the creation of the dataset.

• We applied pansharpening with the weighted Brovey
algorithm [13] to upsample all four spectral bands to
a resolution of 1.5m, resulting in one image with four
bands for each tile.

• We cropped each image to the area covered by the
ALS acquisitions of the same year.

https://openspot-dinamis.data-terra.org


• Pixels values were clipped to a maximum value of
2000 to avoid outliers (upper bound both quantita-
tively and qualitatively assessed through histograms
and visualization).

• Resulting images were normalized to a 0-255 range
and saved as uint8 in a block-tiled compressed tiff
format (256× 256).

• The pansharpening and normalization procedures were
voluntarily kept relatively simple in order to facilitate
reproducibility. They may not be optimal for visu-
alization, e.g., lacking harmonization, but we expect
deep learning models to be robust to such variations
in input data.

E.3. ALS data
• The ALS classified point clouds were downloaded

from the LiDAR HD website (IGN). A reference to
each download link is saved in the file geometries.geojson.

• For each geometry, canopy height images were de-
rived from ALS data by taking the maximum differ-
ence between the height of each point and the one of
its nearest point classified as ground within its pixel,
interpolating values in areas without data.

• LiDAR point clouds were classified by IGN into the
main types of land cover (water, ground, high vegeta-
tion over 1.5m, buildings...). We use this classification
to produce classification rasters at a resolution of 1.5m,
where each pixel takes the value of the most frequent
class of the corresponding LiDAR points.

• We then create vegetation masks by taking the union
of the ALS-derived mask indicating vegetation over
1.5m in height, with the official forest plots outlines
(file forest_mask.parquet), both provided by
IGN. The resulting vegetation masks cover trees and
shrubs within forest plots as well as outside, such as
hedges and urban trees.

• The official forests’ outlines were extracted from “BD
foret” 7 and "simplified" using geopandas python li-
brary to a precision of 10m, with the goal to limit their
size.

F. Datasheet for Open-Canopy dataset
F.1. Motivation

• For what purpose was the dataset created? Was
there a specific task in mind? Was there a particular
gap that needed to be filled? Please provide a descrip-
tion.
The Open-Canopy dataset was created to train and
evaluate models that (i) predict very-high resolution
canopy height maps from satellite imagery using Li-
DAR scans for ground truth, and (ii) detect canopy

7 https://geoservices.ign.fr/bdforet#telechargementv2

height changes between images from different years.
The main gap we are addressing is the lack of cu-
rated open-source datasets with both very high resolu-
tion imagery and ALS-based (LiDAR) canopy height
maps.

• Who created the dataset (e.g., which team, research
group) and on behalf of which entity (e.g., company,
institution, organization)? This dataset was curated
by a team of researchers from [TEXT REMOVED
FOR ANONYMITY] using data made available by
DINAMIS and IGN. DINAMIS [14] is a French plat-
form that provides access to earth observation prod-
ucts for public benefit programs. The IGN is a French
public state administrative establishment aiming to
produce and maintain geographical information for
France.

• Who funded the creation of the dataset? If there
is an associated grant, please provide the name of the
grantor and the grant name and number.
The funding of the Open-Canopy dataset is 100% pub-
lic. Open-Canopy benefited from funding by [TEXT
REMOVED FOR ANONYMITY]

• Any other comments?
N/A.

F.2. Composition
• What do the instances that comprise the dataset

represent (e.g., documents, photos, people, coun-
tries)?
The dataset is split into square areas of width 1.0005
km, rasterized to a 1.5 m resolution (667×667 pixels).
Each instance corresponds to an area of 1 km2 on the
French metropolitan territory.

• How many instances are there in total (of each type,
if appropriate)?
We provide 95,429 instances of 1km2: 66,339 train
tiles, 7,369 validation tiles, 13,675 test tiles, and 8,046
“buffer” tiles. This corresponds to a total of 42,455,312,381
individual annotated pixels.

• Does the dataset contain all possible instances or is
it a sample (not necessarily random) of instances
from a larger set?
The Open-Canopy dataset covers 17% of the French
metropolitan territory. It is derived from a larger
dataset of SPOT 6-7 acquisitions across the full metropoli-
tan French territory between 2013 and 2023 (https:
//openspot-dinamis.data-terra.org), and
a larger dataset of ALS acquisitions from the cam-
paign that started in 2021 and aims at covering the
full metropolitan French territory (LiDAR HD)[10].
The Open-Canopy dataset focuses on domains that are
representative of the diversity of French forests and
where LiDAR HD is available at the time of submis-

https://geoservices.ign.fr/lidarhd
https://geoservices.ign.fr/bdforet#telechargementv2
https://dinamis.data-terra.org
https://openspot-dinamis.data-terra.org
https://openspot-dinamis.data-terra.org
https://geoservices.ign.fr/lidarhd


sion. We also aimed to limit the dataset’s size to 300
GB to facilitate its use.

• What data does each instance consist of?
Each instance consists of a GeoJSON geometry (1km2),
for which a 667×667 SPOT image, a height map, and
a vegetation mask can be extracted from associated
.vrt files, in order to associate to each pixel the fol-
lowing values: (i) RGB and near Infrared channels
derived from pan-sharpened and ortho-rectified satel-
lite images from SPOT 6-7 acquired between 2021
and 2023; (ii) canopy height derived from LiDAR
HD’s 3D point clouds [10] acquired in the same year;
(iii) label (e.g., vegetation, ground, water, building)
derived from LiDAR HD’s 3D point clouds [10].
Additionally, we provide forest outlines obtained from
IGN’s portal [15] stored as a parquet file.

• Is there a label or target associated with each in-
stance?
Yes. We provide a complete pixel-precise height map
and classification raster of the same extent as the satel-
lite images.

• Is any information missing from individual instances?
No. We provide dense information (radiometry, canopy
height, class label) for all pixels with the exception of
areas that have been selected by the French govern-
ment as “sensitive” for security reasons (e.g., nuclear
plants, military area). We do not provide the 3D point
clouds from LiDAR HD, but they are accessible on
their platform.

• Are relationships between individual instances made
explicit (e.g., users’ movie ratings, social network
links)?
N/A.

• Are there recommended data splits (e.g., training,
development/validation, testing)?
Yes, we provide data splits for reproducing the results
of the benchmark. The test split has been explicitly se-
lected to address the complex domain shifts of geospa-
tial data and separated from the train and validation
splits by a 1 km2 buffer to avoid data contamination.

• Are there any errors, sources of noise, or redun-
dancies in the dataset?
The annotations from ALS (LiDAR) data include in-
herent inaccuracies due to the nature of the acquisition
process. Multipath effects from multiple echoes can in-
troduce errors, and outlier points may impact the qual-
ity of the canopy height maps. Additionally, variations
in tree height due to different acquisition times across
seasons can affect consistency between ALS and VHR
acquisitions, as trees might be at various stages of their
growth cycle. Input images sourced from satellite data
pre-processed by IGN and DINAMIS may still exhibit
artifacts due to cloud cover or contain small registra-

tion errors that can impact the analysis.
Classification rasters derived from ALS data are also
subject to inaccuracies. These can stem from inherent
limitations in the ALS technology, including noise
in the data which may lead to errors in vegetation
classification.

• Is the dataset self-contained, or does it link to or
otherwise rely on external resources (e.g., websites,
tweets, other datasets)? This dataset is self-contained
and will be stored on the Huggingface platform. The
dataset is under the Open License 2.0 of Etalab.

• Does the dataset contain data that might be con-
sidered confidential (e.g., data that is protected by
legal privilege or by doctor–patient confidential-
ity, data that includes the content of individuals’
non-public communications)?
No. The classification raster does not contain any
information that would not be available in other open-
access sources (DINAMIS, BD-Foret, LiDAR-HD).
We have specifically avoided high-risk areas such as
military installations or nuclear plants.

• Does the dataset contain data that, if viewed di-
rectly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? If so, please
describe why.
No.

• Does the dataset identify any subpopulations (e.g.,
by age, gender)?
No.

• Is it possible to identify individuals (i.e., one or
more natural persons), either directly or indirectly
(i.e., in combination with other data) from the
dataset?
No. The resolution of 1.5m per pixel and the aerial
perspective makes identifying individuals impossible.

• Does the dataset contain data that might be con-
sidered sensitive in any way (e.g., data that reveals
racial or ethnic origins, sexual orientations, reli-
gious beliefs, political opinions or union member-
ships, or locations; financial or health data; bio-
metric or genetic data; forms of government identi-
fication, such as social security numbers; criminal
history)?
No.

• Any other comments?
No.

F.3. Collection Process
• How was the data associated with each instance

acquired?
The satellite images are sampled from the DINAMIS
open SPOT collection. This collection consists of an
annual mosaic of selected images taken by SPOT 6-7

https://huggingface.co
https://openspot-dinamis.data-terra.org


satellites between March and October of each year
between 2013 and 2023, covering the entire French
metropolitan territory. All images are preprocessed by
IGN and mapped onto a unified cartographic coordi-
nate reference system (Lambert 93).

• The ALS classified point clouds were downloaded
from the LiDAR HD website (IGN).

• What mechanisms or procedures were used to col-
lect the data (e.g., hardware apparatus or sensor,
manual human curation, software program, soft-
ware API)?
The IGN selected several acquisition companies through
a call for tender with strict specifications.

• If the dataset is a sample from a larger set, what
was the sampling strategy (e.g., deterministic, prob-
abilistic with specific sampling probabilities)?
The sampling strategy was semi-automated. First a
manual selection of spot images was manually chosen
and downloaded from DINAMIS website, so as to
cover a diverse range of forests types in areas where
LiDAR HD was also available. Then training, vali-
dation, and test splits were randomly sampled, with
constraints such as test tiles having a size of 7 km2

and being separated from other tiles by a buffer of 1
km2, and covering an area of about 14,000 km2. See
Section E.1 for more details.

• Who was involved in the data collection process
(e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much were
crowdworkers paid)?
The data collection process for the dataset was man-
aged by the European Space Agency (ESA), which
provided the Very High Resolution (VHR) Imagery,
and the French Mapping Agency (IGN), which pro-
vided the LiDAR HD data. The curation of this dataset
was overseen by two individuals who were associated
with academic institutions as a postdoctoral researcher
(ENS) and an intern (LSCE) during the dataset’s cre-
ation.

• Over what timeframe was the data collected? Does
this timeframe match the creation timeframe of
the data associated with the instances (e.g., recent
crawl of old news articles)?
The collection of satellite imagery and ALS data spans
from 2021 to 2023, which coincides with the period
of availability of LiDAR HD data at the time of the
creation of the dataset.

• Were any ethical review processes conducted (e.g.,
by an institutional review board)?
No.

• Does the dataset relate to people?
No.

• Did you collect the data from the individuals in

question directly, or obtain it via third parties or
other sources (e.g., websites)?
N/A.

• Were the individuals in question notified about the
data collection?
N/A.

• Did the individuals in question consent to the col-
lection and use of their data?
N/A.

• If consent was obtained, were the consenting indi-
viduals provided with a mechanism to revoke their
consent in the future or for certain uses?
N/A.

• Has an analysis of the potential impact of the dataset
and its use on data subjects (e.g., a data protection
impact analysis) been conducted?
No. Given the nature of the dataset—which involves
high-resolution canopy height data that does not in-
clude personal identifiers or directly impact individual
privacy—it is unlikely that the dataset poses signifi-
cant risks to data subjects. The focus is primarily on
environmental features rather than personal data.

• Any other comments?
No.

F.4. Preprocessing, Cleaning, and/or Labeling
• Was any preprocessing/cleaning/labeling of the data

done (e.g., discretization or bucketing, tokenization,
part-of-speech tagging, SIFT feature extraction, re-
moval of instances, processing of missing values)?
Canopy Height Maps were derived from ALS data by
taking the maximum difference between the height of
each point and the one of its nearest point classified as
ground within its pixel, interpolating values in areas
without data.

• For vegetation masks, we take the union of the ALS-
derived mask indicating vegetation over 1.5m in height,
with the official forest plots outlines, both provided by
IGN. The resulting vegetation mask covers trees and
shrubs within forest plots as well as outside, such as
hedges and urban trees. The official forests’ outlines
were “simplified” using geopandas python library to a
precision of 10m, in order to limit their size.

• SPOT 6-7 images were pansharpenened with the weighted
Brovey algorithm to upsample all four spectral bands
to a resolution of 1.5m. Then all pixels values were
clipped to a maximum value of 2000 to avoid outliers
and normalized to a 0-255 range to be saved as uint8,
in a block-tiled compressed tiff format.

• Was the “raw” data saved in addition to the prepro-
cessed/cleaned/labeled data (e.g., to support unan-
ticipated future uses)? If so, please provide a link or
other access point to the “raw” data.

https://geoservices.ign.fr/lidarhd


Yes. The raw data can be downloaded from DINAMIS
and LiDAR HD websites.

• Is the software used to preprocess/clean/label the
instances available?
Yes. All the codes to preprocess the data are available
on the Github of the project [TEXT REMOVED FOR
ANONYMITY]

• Any other comments?
No.

F.5. Uses
• Has the dataset been used for any tasks already?

No.
• What (other) tasks could the dataset be used for?

We encourage future researchers to use the Open-
Canopy dataset for several tasks. Particularly, the
dataset could be used to predict land cover in addition
to canopy height, using the classification rasters as
complimentary labels. It could also be used for pre-
training of models for other tasks such as tree cover
segmentation and tree species classification.

• Is there anything about the composition of the
dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future
uses?
This dataset is geographically limited to metropoli-
tan France. Although France’s territory is diverse,
featuring oceanic, continental, Mediterranean, and
mountainous bioclimatic regions, it does not contain
tropical or desert areas.

• The Open-Canopy dataset’s reliance on purely optical
data may limit the applicability of the models trained
on it to regions with pervasive cloud cover.

• Are there tasks for which the dataset should not be
used?
No.

• Any other comments?
No.

F.6. Distribution
• Will the dataset be distributed to third parties out-

side of the entity (e.g., company, institution, organi-
zation) on behalf of which the dataset was created?
Yes. the dataset will be open-source.

• How will the dataset be distributed (e.g., tarball on
website, API, GitHub)?
The data will be hosted on Huggingface platform
([TEXT REMOVED FOR ANONYMITY]), with down-
load and usage instructions on the Open-Canopy project
page hosted on GitHub ([TEXT REMOVED FOR
ANONYMITY]).

• When will the dataset be distributed?
All data is already released under an open-source li-

cense, see below.
• Will the dataset be distributed under a copyright

or other intellectual property (IP) license, and/or
under applicable terms of use (ToU)? If so, please
describe this license and/or ToU, and provide a link
or other access point to, or otherwise reproduce, any
relevant licensing terms or ToU, as well as any fees
associated with these restrictions.
Yes. The data is governed by the Open Licence 2.0 of
Etalab (https://www.etalab.gouv.fr/wp-
content/uploads/2018/11/open-licence.
pdf).

• Have any third parties imposed IP-based or other
restrictions on the data associated with the instances?
No.

• Do any export controls or other regulatory restric-
tions apply to the dataset or to individual instances?
No.

• Any other comments?
No.

F.7. Maintenance
• Who will be supporting/hosting/maintaining the

dataset?
Hugginface will support hosting of the dataset and
metadata. [TEXT REMOVED FOR ANONYMITY]
will support maintenance of the dataset in case of
revisions.

• How can the owner/curator/manager of the dataset
be contacted (e.g., email address)?
[TEXT REMOVED FOR ANONYMITY]

• Is there an erratum?
No. There is no erratum for our initial release. Errata
will be documented as future releases on the dataset
web page.

• Will the dataset be updated (e.g., to correct labeling
errors, add new instances, delete instances)?
Additional satellite imagery and ALS-derived height
maps may be added to future versions of the Open-
Canopy dataset.

• If the dataset relates to people, are there applicable
limits on the retention of the data associated with
the instances (e.g., were individuals in question told
that their data would be retained for a fixed period
of time and then deleted)?
N/A..

• Will older versions of the dataset continue to be
supported/hosted/maintained?
Yes. We are dedicated to providing ongoing support
for the Open-Canopy dataset.

• If others want to extend/augment/build on/contribute
to the dataset, is there a mechanism for them to do
so?

https://openspot-dinamis.data-terra.org
https://geoservices.ign.fr/lidarhd
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https://www.etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf


Proposed extensions or corrections to the Open-Canopy
dataset may be submitted to the providers for consid-
eration. The providers will assess the feasibility of in-
corporating the suggested modifications, considering
factors such as data licensing, maintenance require-
ments, and relevance.

• Any other comments?
No.
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