Supplementary Material for GigaHands: A Massive Annotated Dataset of
Bimanual Hand Activities

The supplementary material for GigaHands provides additional details and results to support the main paper. It includes
supplementary videos, examples of data and annotations, comprehensive comparisons of dataset statistics, detailed explana-
tions of our hand and object motion tracking methods, elaborations on text instructions and annotations (including prompts
and examples), further experiments on text-driven motion synthesis, motion captioning, and dynamic reconstruction. We
also provide additional applications on hand-object motion tasks, as well as detailed inspections of the dataset, such as object
visualizations, the verb pool, and lists of scenarios and scenes.
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1. Data and Annotation Example

Table 1 illustrates the types of annotations we provided for a single motion clip. These include the text instruction, text
annotation, augmented annotations, original multi-view RGB videos, 2D and 3D keypoints, 3D hand meshes, hand motions,
object masks, textured object meshes, and object motions.

type view #1 view #2 view #3
instruction Place your left-hand fingers on the fretboard of the ukelele to form chords.
annotation Place your left-hand fingers on the fretboard of the ukelele to form chords.

Position your left-hand fingers on the fretboard to shape chords.
Rest your left-hand fingers on the fretboard to create chords.
augmented annotation Set your left-hand fingers on the fretboard to assemble chords.
Arrange your left-hand fingers on the fretboard to build chords.
Use your left-hand fingers on the fretboard to construct chords.

video

object masks

2D hand keypoints

3D hand keypoints

3D hand mesh/motion

3D object mesh/motion

Table 1. Annotations for a single motion clip.



2. Comparison of Dataset Statistics

Table 2. Comparisons of 3D bimanual motion datasets. Dataset names are highlighted with different colors if it has no text annotations
(gray), , sparse description (red), and

Name setting markerless hand track. object track. #mins #motions # poses #views #frames #subjects #objects #verbs
[22]| studio semi-auto. / 630 62 203k 12 3.03M 34 / 24
Ego4D[13] in-the-wild / / / / / 1 / 931 / 1452
Ego-Exo04D [7] in-the-wild manual / / / 44M 5-6 / 740 / 402
[17] in-the-wild manual manual 1,333 4k 1.2M 1 2.4M 4 800 25
ARCTIC [5] studio X mocap mocap 121 339 218k 9 2.1M 10 11 X
[18] studio X mocap mocap 202 23k 363k 13 47M 14 196 13
OaklInk?2 [39] studio X mocap mocap 557 2.8k 993k 4  4.0IM 9 75 55
HOT3D [3] studio X mocap mocap 833 41k 17M 23 37M 19 33 X
studio auto auto 2,034 139k 3. 7M 51 183M 56 417 1467

Table 2 provides a comprehensive comparison of 3D bimanual motion datasets, including their capturing sources, an-
notation methods, and statistics across various features. The table applies the same method as Figure 2 in the main paper
for verb counting. To compile the verb counts, we extracted verbs from several sources: fine-granularity labels from As-
semblyHands [22], atomic descriptions from Ego-Exo4D [7], redacted narrations from Ego4D [6], category labels and task
definitions from HOI4D [17], action types from TACO [18], task descriptions and affordance annotations from OakInk2,
and our own augmented text descriptions from GigaHands. For verb extraction, we parsed sentences using spaCy [11] and
collected the verb stems. Verb stems that were misspelled or not recognized as verbs in either WordNet [20] or spaCy’s
‘en_core_web_sm’ model were removed. Clearly, GigaHands surpasses all other datasets in filming length, number of motion
sequences, number of camera views, frame count, and verb count.

3. Experiments on Text-driven Motion Synthesis

Implementation Details Our framework builds upon the T2M-GPT architecture proposed by [40] and utilizes their pub-
licly available PyTorch codebase'. The network comprises a motion VQ-VAE that learns a mapping between motion data and
discrete code sequences and a T2M-GPT which generates code indices conditioned on the text description. For the Motion
VQ-VAE, the codebook size is set to 512 x 512, with a downsampling rate [ = 4. The encoder and decoder is a simple
convolutional architecture consisting of 1D convolutions, residual blocks [10], and ReL.U activations. Temporal downsam-
pling and upsampling are performed using strided convolutions (stride = 2) and nearest-neighbor interpolation, respectively.
We use the AdamW optimizer [19] with [81, 82] = [0.9,0.99], a batch size of 256, and an exponential moving constant
A = 0.99. The model is trained for the first 200K iterations with a learning rate of 2 x 10~4, followed by 100K iterations
with a reduced learning rate of 1 x 102, Based on our text annotations, we construct a custom word vectorizer utilizing
pre-trained 300-dimensional word embedding vectors from GloVe [28].

For the T2M-GPT, we employ adopts a transformer architecture [36] consisting of 18 layers with a model dimensionality
of 1,024 and 16 attention heads. The maximum length of the code index sequence is capped at 50, with an additional end
token incorporated to indicate sequence termination. The optimization of the transformer is performed using the AdamW
algorithm [19], configured with hyperparameters [S1, 52] = [0.5,0.99] and a batch size of 128. The training process spans
150K iterations with an initial learning rate of 1 x 10~4, followed by a decay to 5 x 10~% over an additional 150K iterations.

To ensure consistency across three datasets—TACO [18], OakInk2 [39], and GigaHands—we standardize the hand repre-
sentations and motion ranges. First, we extract 3D hand keypoints from the MANO [31] parameters using the MANO Layer”.
Subsequently, we align the hand orientations such that the fingertips point in the positive z-axis direction. Additionally, we
recenter each motion sequence by adjusting the hand positions so that the motion center of both hands is aligned to the origin.

Evaluation Metrics Given the lack of a standard hand motion feature extractor, we train a simple framework consisting
of a motion extractor and a text extractor trained under a contrastive learning paradigm, following [8]. The Motion and Text
Feature Extractors are designed to learn geometrically close feature vectors for matched text-motion pairs while ensuring
separation for mismatched pairs. Specifically, the input text and motion are encoded into semantic vectors F; and Fj,,

Ihttps://github.com/Mael-zys/T2M-GPT
thtps://qithub.com/hassony2/manopth
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respectively, using two distinct bi-directional GRUs. To achieve this, we minimize a contrastive loss that enforces proximity
for matched pairs and imposes a margin of separation m for mismatched pairs:

2
Lest =y - (max(0,m — ||Fy = Finl[3))” + (1= y) - [|1F = Falll3, M

where y € 0, 1, with y = 1 indicating matched text-motion pairs and y = 0 otherwise. The margin m is set to 10 across all
datasets. These feature extractors are independently trained for each dataset to establish an upper bound respectively.

The trained text and motion feature extractors are utilized to evaluate text-to-motion generation using the metrics pro-
posed in [8]. We denote the ground-truth motion features, generated motion features, and text features derived from the
aforementioned feature extractors as Fg, Fyep,, and Fy, respectively.

R Precision. For each generated motion, a text pool is formed with its ground truth text and 31 randomly selected
mismatched texts. Euclidean distances between the description feature and motion features are computed and ranked. If the
ground truth text ranks in the top-k positions (k=1, 2, 3), it counts as a successful retrieval. The average accuracy over all
samples defines the top-k R-precision.

Multimodal Distance (MM Dist.) MM Dist. evaluates the alignment between text embeddings and generated motion
features. Given N randomly generated samples, it calculates the average Euclidean distance between each text feature and
the corresponding generated motion feature:

N
. 1 i i
MM Dist. = = ;IIFM - F @)

where F;;n and F} are the features of the i-th text-motion pair.
Frechet Inception Distance (FID). FID measures the distributional similarity between real and generated motion features.
Features are extracted from ground-truth motions in the test set and generated motions from the corresponding descriptions.

FID is computed as:
1
FID = [|g: — MgenH2 — Tr(ogt + 0gen — 2(0gt0gen)?), 3)

where f14¢ and fiy,cq are mean of Fy; and Fy.,,. o is the covariance matrix and Tr denotes the trace of a matrix.
Diversity. Diversity quantifies the variance across all generated motion sequences in the dataset. From the generated
motions, Sg;s pairs of motion features are randomly sampled, denoted as F;_,, and F,,. . The diversity is then calculated as:

gen gen’
1 Sdis
Diversity = 5 Z [ Fyen — Fyenlls )
¥ i=1

In our experiments, we set Sq;s = 300, as suggested in [8].

MultiModality. MultiModality assesses the diversity of hand motions generated from the same text description. For the
i-th text description, 20 motions are generated, and two subsets, each containing 10 motions, are sampled. Denoting the
features of the j-th pair for the i-th text description as (Fi:J | F") MultiModality is computed as:

gen’ * gen

N 10
1 o .
MultiModality = —=== > * > [ Fyil, = Fy | )

i=1 j=1

Comparison of Different Backbones. We evaluate the text-to-hand motion synthesis performance on our dataset using
three different backbone models: TM2T [9], MDM [35], and T2M-GPT [40], as summarized in Table 3. TM2T comprises
a motion VQ-VAE module for motion quantization and an attentive GRU-based model for text-to-motion generation. MDM
employs a classifier-free diffusion generative approach. While these models were originally developed for human motion
synthesis, we adapted them to generate hand motions on our dataset.

From Table 3, it is evident that our dataset supports all three backbones effectively. Notably, the state-of-the-art T2M-
GPT architecture for human motion generation also achieves the best performance on our dataset, demonstrating its superior
capability for motion synthesis.



Table 3. Quantitative results for text-driven motion synthesis with different backbones trained on our dataset. upper bound indicates
performance calculated with the ground truth. We repeat the evaluation 20 times and report the averge with 95% confidence interval.

R Precision(%)1 . . . . .
Dataset @l @2 @3 MM Dist.| FID| Diversity—  MultiModality
upper bound 77.4%002 g g# 002 g1 3001 9 gg+.005 () p2+000 17 9097 -
MDM [35] 22.5:|:.004 42.7:|:.005 50.2:|:.005 7.81i'082 5.60i'126 9.8:t.088 8.52i'103
TM2T [9] 24.1i.002 38.4i'003 47’1i.004 9.28i'017 8.60i'161 9.7i.065 6.29i'085
T2M-GPT [40] 3125 44759 531+0 6,685  470%°° 105797 9.11+2%

Table 4. Ablation study on different hand motion representations and text annotations for text-driven motion synthesis.KP refers to the 3D
hand keypoints representation, while 6D denotes the MANO pose parameters encoded in the 6D representation. Numbers in parentheses
indicate the quantity of text scripts. upper bound indicates performance calculated with the ground truth. We repeat the evaluation 20 times
and report the averge with 95% confidence interval.

Dataset &1 R Precg;’n(%n g7 MMDist,  FID|  Diversity— MultiModality}
upper bound  73.3%:003  87,0%:002 92 1001 399006 oot-000 19 g*-067 -

6D (141() 26.5i'003 43'31.004 52.3i.003 7.56i'051 5.111.183 9'7i.078 7.28i'059
6D (841() 29'5i.003 46.9i.004 57'3i.004 7.04i.041 4'34i.221 11.7i.068 9.08i'060
upper bound  77.4F Y% 88 8002 g1 3F00T 9 96005 (,002F V0 11.9F097 -

KP (14k) 27'2i.003 40'11.002 49.7i.004 7.13i.020 5.201.169 8.7i'067 7'29i.085
KP (84k) 31270 447001 531%004 668502 470+078  10.5+0% 9.11+2%

Ablations of Different Motion Representations and Text Annotations. We further explore the performance of text-to-
motion generation using different hand motion representations in Table 4. One approach leverages the 3D hand keypoints
derived from MANO parameters, represented as X € R#2*3. The other employs the MANO hand pose parameters 6 €
R16%6 encoded in a 6D representation [42]. We also conduct an ablation study to evaluate the impact of the number of
text descriptions on text-to-motion generation. In GigaHands, each motion clip is paired with six distinct text descriptions,
resulting in a total of 84k annotations. We compare the generation results using 14k annotations versus the full set of 84k
annotations, as presented in Table 4.

The results demonstrate that both the 6D representation and the 3D keypoint representation achieve comparable perfor-
mance in text-driven hand motion synthesis. This finding suggests that both representations are equally capable of capturing
the essential hand motion features required for this task. Nevertheless, incorporating additional text annotations significantly
boosts performance across all evaluation metrics. This improvement underscores the importance of enriched textual descrip-
tions in enhancing the semantic alignment between textual inputs and generated hand motions, irrespective of the chosen
motion representation.

More Qualitative Results. We present additional qualitative results from our testing sets to demonstrate the effectiveness
of text-driven hand motion synthesis in Figure 1. These examples further highlight the ability of our approach to generate
semantically aligned hand motions from diverse textual inputs.

fest\ train (FID / Diversity)
GigaHands | Oakink2 TACO
GigaHands | 6.61/10.5 | 44.8/4.01 | 52.1/7.11
Oakink2 19.1/6.45 | 19.6/6.88 | 58.1/5.04
TACO 22.5/11.5 | 33.6/9.31 | 11.0/11.1

Table 5. Cross-dataset evaluation of text-to-motion models trained on different datasets. Each column represents the training dataset, while
each row shows the evaluation results on a different dataset. Metrics include FID and Diversity, computed on the test set feature extractor.
The ground truth Diversity metrics for GigaHands, Oakink, and TACO are 11.9, 9.30, and 14.2, respectively.
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Figure 1. More qualitative results for text-driven motion synthesis on GigaHands. Darker color indicates later frame in the sequence.

Cross Validation on different datasets. To validate the capacity of text-to-To evaluate the generalization ability of text-
to-motion generation models trained on GigaHands, we conduct cross-dataset validation. Specifically, we train T2M-GPT
models on one dataset and evaluate their performance on others. Table 5 presents the quantitative results, where each column
indicates the dataset used for training, and each row corresponds to the dataset on which the model is tested. We report the
FID and Diversity metrics, computed on the corresponding test dataset’s feature extractor.

Since the triplet-based textual annotations in the TACO dataset are coarse, with each triplet corresponding to multiple
motion sequences, we employ ChatGPT-4o [2] to refine the captions during testing and select the best-performing generation
for each triplet. The results in Table 5 demonstrate that our models achieve competitive performance on unseen datasets,
despite being trained on a single dataset. However, due to the simplistic nature of TACO’s annotations, models trained on
other datasets struggle to perform well when tested on TACO.

For OaklInk2, object descriptions rely on material and texture distinctions rather than explicit shape descriptions. For
example, "yellow striped bottle” refers to a large plastic jar, whereas “white bottle” describes a small bottle. This captioning
style differs from the textual descriptions in our dataset, leading to a slight performance drop when models trained on our
dataset are tested on OakInk2.

4. Experiments on Motion Captioning

Implementation Details. Our motion captioning framework is also built upon the TM2T [9] architecture, leveraging the
same VQ-VAE for motion quantization as used in the text-driven motion synthesis task. For tokenized motion representation,
we employ a transformer model to efficiently map hand motions to textual descriptions. The transformers have 4 attention
layers, both with § attention heads with 512 hidden size.

When evaluate captioning performance across datasets, we train the VQ-VAE and motion-to-text models separately on
TACO [18], OakInk?2 [39], and GigaHands. For testing the model’s ability in in-the-wild motion captioning, we first train
a VQ-VAE using all datasets combined, followed by training the motion-to-text model exclusively on GigaHands. When
generating captions for other datasets, tokenized motion sequences from the combined VQ-VAE are processed by our motion-
to-text model, enabling consistent inference across diverse motion data.

Evaluation Metrics. We use R Precision and Multimodal Distance (MM Dist.) to quantitatively measure the perfor-
mance of our motion-to-text mapping. Unlike in text-to-motion tasks, where motion features are used to retrieve text, we
reverse the process by using text features to retrieve the corresponding motion. This adaptation ensures the metrics effec-
tively measure the alignment in motion-to-text tasks. For linguistic evaluation, we use the NLPEval codebase® to compute

3https://github.com/Maluuba/nlg-eval
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Figure 2. Effect of dataset size on motion reconstruction and motion-to-text generation performance. The x-axis shows the percentage of
training data used (10%, 20%, 50%, 80%, and 100%), and the y-axis displays performance metrics: Pairwise BLEU, MM Dist., Top-1,
and Top-3 accuracy. Larger datasets consistently improve performance across all metrics, highlighting the benefits of increased data scale.

BLEU [26] and ROUGE [15]. To assess text diversity, we compute Distinct-n[14], which evaluates diversity by counting
the number of distinct unigrams and bigrams in the generated texts. Additionally, we measure Pairwise BLEU[34] using the
SacreBLEU *.

Impact of Dataset Size. We show the influence of dataset size on both motion reconstruction and text-to-motion tasks in the
paper. Figure 2 further illustrates the impact of dataset size on motion reconstruction and motion-to-text generation. Based
on the TM2T architecture, we train a motion VQ-VAE for reconstruction and a transformer-based motion-to-text model for
captioning with varying proportions of the training set (10%, 20%, 50%, 80%, and 100%), while evaluating performance on
the same test set. We report Pairwise BLEU, MM Dist., and Top-1/Top-3 accuracies.

The results show consistent improvements across all tasks as the dataset size increases. Larger datasets lead to bet-
ter motion-text alignment (lower MM Dist.), more diverse text generation, and improved retrieval accuracies. These find-
ings emphasize the importance of large-scale data for enhancing performance in motion reconstruction, text-to-motion, and
motion-to-text generation.

Table 6. Ablation study on different hand motion representations and text annotations for motion captioning task.KP refers to the 3D hand
keypoints representation, while 6D denotes the MANO pose parameters encoded in the 6D representation. Numbers in parentheses indicate
the quantity of text scripts. Upper bound indicates the metric performance calculated with the ground truth.

R Precision(%)t
@l @2 @3

upper bound 75.7 872 92.1 3.28 - - - - - -
6D (14k) 498 62.8 70.2 5.66 1.30 33.7 51.2 4.03 16.4 47.1

Pairwise

Datasets MM Dist| BLEU | B@41 ROUGEf distinct-1(%)T  distinct-21(%) BScore?

6D (84k) 502 613 66.7 6.31 0.804 36.0 53.7 7.27 24.5 50.3
upper bound 753 89.1 939 2.87 - - - - - -

KP (14k) 572 689 744 4.69 1.21 41.3 56.8 6.28 214 52.4
KP (84k) 570 66.1 69.8 5.37 0.916 43.1 57.7 15.3 36.9 554

Ablations of Different Motion Representations and Text Annotations. We also conduct ablation study on different
motion representation and number of text annotations for motion captioning task in Table 6

The results indicate that the 6D representation slightly underperforms compared to the keypoint representation in the
motion captioning task. However, the addition of extra text annotations significantly improves performance on linguistic
metrics, boosting the diversity of generated motions. Also as the number of text annotations per motion clip increases, the
retrieval accuracy for matching motions to corresponding text slightly decreases. This could be due to the fact that with more
annotations, the matching process becomes more challenging, as the model may have to distinguish between a larger variety
of possible descriptions for the same motion, leading to more potential mismatches in retrieval.

4https://qithub.com/mjpost/sacrebleu
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Figure 4. Qualitative Results on Novel View Synthesis.

6. Experiments on Hand-Object Interaction

To assess the effectiveness of our dataset in modeling hand-object interactions, we evaluate its applicability across two object-
related tasks inspired by prior benchmarks in Oakink and TACO. GigaHands provides rich and diverse annotations of objects
and their interactions with human hands, making it a valuable resource for learning and predicting hand-object dynamics.
The selected tasks aim to demonstrate the advantages of GigaHands in capturing fine-grained motion patterns and enhancing
downstream applications.

Task-aware Motion Fulfillment. The Task-aware Motion Fulfillment task aims to generate realistic hand motion sequences
that align with predefined object trajectories while adhering to a given textual task description. To achieve this, we adapt the



Table 8. Quantitative results for text-driven motion synthesis with models trained on different datasets. upper bound indicates performance
calculated with the ground truth. We report the mean of 20 evaluations, and — means the closer to the upper bound the better. The model
trained on GigaHands performs best on most metrics.

R Precision(%)1
@] @2 @3

upper bound 504 712 8l.1 3.67 0.022 930 -
OakInk2 [39] 234 357 498 7.41 13.1 6.24 3.71

Dataset MM Dist. FID] Div— MM.T

upper bound  77.4 88.8 91.3 2.96 0.002 119 -
GigaHands 272 462 54.6 6.12 591 10.2 9.73

MDM baseline model [35] by incorporating dual-conditioning on both textual instructions and object trajectories. Given a
task description and a sequence of object movements, the model predicts a corresponding sequence of hand motions that
naturally interact with the object. For evaluation, we employ feature extractors and metrics used in text-to-motion tasks
above. Table 8 provides a quantitative comparison between our approach and Oakink2. Our method outperforms Oakink2
across all evaluated metrics, highlighting its effectiveness in generating task-aware hand-object interactions.

Method Je(mm,|) Te.(mm,]) Re(°,])

TACO 71.7/58.4 52.8 73.2
GigaHands 69.3/62.3 47.6 67.5

Table 9. Quantitative comparison of hand-object motion forecasting across different datasets. The evaluation metrics include Mean Per
Joint Position Error (J.) for right / left hand pose prediction, translation error (7% ) and rotation error (R.) for object motion. Lower values
indicate better performance.

Generalizable Hand-object Motion Forecasting. Hand-object motion forecasting aims to predict future hand and object
motions based on a short observed sequence. Given the poses of both hands and objects over N consecutive frames, the
objective is to forecast their poses over the subsequent M frames. In our experiments, we set N = 10 and M = 10
We adapt the MDM model by conditioning it on the past N frames of hand and object poses to predict their future states
over the next M frames. Following human-object forecasting evaluations [18, 38], we access hand pose estimation using
Mean Per Joint Position Error J., while object motion is evaluated with translation error 7, and rotation error R.. For
TACQO’s triplet representation, we condition only on tool poses and compute the corresponding metrics. Table 9 presents a
comparative analysis of models trained on different datasets. While both models achieve comparable performance in hand
pose prediction, our approach outperforms TACO in object motion forecasting. However, hand-object motion forecasting
still remains a challenging task. The inherent complexity and rapid variations in generative motion patterns make modeling
motion distributions difficult. Future work could explore more effective strategies to address this challenge.

7. Hand Motion Tracking

box detection 2D keypoints detection | time(150frames) valid rate
detectron2 VITPose 6.5min 91.7%
yolov9c/track VITPose 3.3min 89.6%
yolov9c/detect batch VITPose 1.1min 85.4%
yolov9c/detect batch HaMeR 3.0min 97.9%

Table 10. Comparison of different bounding box detection and 2D keypoint estimation methods.

Figure 5 illustrates the complete pipeline for hand motion tracking. The process begins with view-wise hand detection,
tracking, handedness classification, and 2D keypoint extraction. Using multi-view 2D keypoints for both hands, we then
triangulate each hand separately to obtain 3D hand keypoints. Finally, with the 2D keypoints and triangulated 3D keypoints,
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Figure 5. Hand Motion Tracking Pipeline.

we fit the MANO [32] parameters under these constraints. To validate our choices for hand detection, handedness classifi-
cation, and 2D keypoint estimation, we calculate the number of valid 3D triangulated frames. We consider a 3D frame valid
if, for both hands: (1) there are no missing keypoints; (2) the hand kinematics are normal, with bone length variations across
frames within a certain threshold; and (3) the root of the hand moves temporally consistently. Frames that do not meet these
criteria are considered invalid 3D triangulated keypoints.Table 10 compares the valid frame rate among 60 motion clips and
the inference time for processing 150 frames (5 seconds).

Hand Detection and Tracking. For hand detection, we choose YOLO-v9 [30] as the backbone because it provides reliable
detection results, runs efficiently compared to other backbones such as Detectron2[37], and yields consistent temporal results.
Instead of using box tracking, we batch frames across multiple time steps (up to 256 images) and apply the detection function
simultaneously, which accelerates inference time without significantly reducing the valid rate. During the filming process,
we instructed subjects to keep both of their hands within the scene. Therefore, by default, we extract the two most confident
bounding boxes labeled as "hand’ from the detection results.

Handness (left or right). To determine the handedness (left or right) of each detected hand, we follow the method adopted
in HaMeR [27]. We use a side-aware checkpoint of ViTPose to detect keypoints within each bounding box. We classify a
hand as ’right’ if more than 60% of the detected keypoints correspond to the right hand, and ’left’ if they correspond to the
left hand.

2D Keypoint Extraction. We use HaMeR[27] for 2D keypoint extraction for two main reasons. First, it estimates a
parametric representation of the hand from a cropped image, ensuring that all keypoints can be extracted from the output.
Second, it provides more reliable results that ensure the hand kinematics are reasonable. We believe this is the primary reason
that keypoints extracted from HaMeR lead to the most valid triangulated 3D keypoints. Although using HaMeR decreases
inference speed, it significantly improves the valid rate.

3D Keypoint Triangulation. With the camera parameters and 2D keypoints extracted from multiple views, we triangulate
the 3D keypoints for each hand. We remove outliers using RANSAC to improve accuracy.

Parameter Fitting. For MANO parameter fitting, we follow the EasyMoCap [ 1] pipeline, using both 2D and 3D keypoints
as supervision. To capture fine-grained finger motions, we disable the PCA components and use a flat mean shape during the
fitting process. This approach allows for more detailed and accurate hand mesh reconstruction.

8. Object Motion Tracking

The tracking process aims to estimate the 6DoF (six degrees of freedom) pose of the pre-scanned or generated mesh over
time using multi-view RGB videos as constraints. Since our capturing system only contains RGB information without depth,
pose estimation poses significant challenges. Figure 6 illustrates the complete object tracking pipeline. However, this can
be mitigated by utilizing 51 camera views that provide 360-degree coverage of the scene. The tracking process generally
consists of three stages: (1) extracting object masks across views as constraints; (2) providing a coarse pose estimation for



*most confident
detect retrieval

filmed video filter filter *best match

match

random initialization
initial candidates  positive candidates true positive candidates

across time across time across time -
initR
multi-view renders match constraint
match
rendered mesh
“keyboard.”
“drum face.”
“ukelele. guitar.” .. Kil
“embedded cameras.” init T tracking
i ositive prompts i - i i i
object scan p promp negative prompts density field differentiable rendering

Figure 6. Hand Motion Tracking Pipeline.

stage mask coverage
coarse estimation 45.2%
pose refinement (first frame) 91.1%
pose refinement (sequence) 78.5%

Table 11. Evaluation of Mask Coverage Rates Across Different Stages of Object Motion Tracking.

the mesh as an initialization for the following refinement process; (3) refining the object pose using multi-view pixel-level
constraints to achieve accurate pose estimation. We use the mask coverage rate as an evaluation metric for tracking quality.
The mask coverage rate is defined as the percentage of true positive segmented masks across frames that overlap with the
rendered object’s silhouette during differentiable rendering. Table 11 provides this evaluation across different stages.

Object Segmentation. To use the multi-view RGB videos as constraints, accurate object masks are necessary. During the
mask extraction process, we aim for three objectives: (1) obtaining masks from as many views as possible to guarantee more
accurate results; (2) avoiding false positives in the segmentation masks, as they can be very distracting; (3) ensuring the
masks are consistent across views to provide stable supervision. To achieve the first goal, for each view, we use DINOv2 [24]
to detect as many object candidates as possible across time steps. We detect objects across time steps because an object might
only appear during certain time period throughout the video. With multiple candidates that cover all objects across time
steps, we address the second goal by using both image and text prompts to identify true positive candidates through feature
matching methods using CLIP [23] and Grounding DINO [16]. Image prompts are generated by rendering object scans from
random views on a sphere, while text positive prompts are manually designed. To remove false positives, we design negative
prompts and compare them with the positive candidates. If an object candidate is more similar to the negative prompt than to
the positive prompt, we regard it as a false positive. From all the true positive candidates, we select the most confident one
using text-image similarity evaluated by CLIP [23]. With the most confident candidate, we can track the object across the
video using SAM?2 [29].

Coarse Pose Estimation Given the segmented object masks across views, we can initialize the coarse pose of the object.
We first find the time step with the largest summed mask area of views. We use the multi-view masks at this time step to
reconstruct the density field using Instant-NGP [21]. We threshold the reconstructed density field and find the largest cluster
inside the field, shown as the yellow points in Figure 6. We then use the center of this density field as the coarse translation
of the object. If the density field reconstruction fails, we use the center of the capture system with five random offsets as
the coarse translations. Since the reconstructed density field is noisy, we cannot reliably use ICP (Iterative Closest Point) to



obtain the coarse rotation. Additionally, the geometric symmetry of the meshes requires us to use appearance information to
initialize the rotation. We follow FoundPose [25] by randomly rotating the template mesh and retrieving the top five matched
rotations using DINOv2 features. We use these as the initialization for rotation. Table 11 row 1 reports the mask coverage of
the coarse estimation at this stage.

Pose Refinement. Given the coarse estimation of translation and rotation, we refine the pose estimation using differentiable
rendering supervised with multi-view silhouette loss. The refinement consists of three stages. In the first stage, we select the
best coarse initialization. In the previous step, we might have multiple translation and rotation candidates due to density field
reconstruction failure and ambiguity in object symmetry. Therefore, we first optimize the pose starting from multiple coarse
pose candidates for 200 steps. In the second stage, we select the coarse pose candidate with the minimal silhouette loss and
further optimize the pose for 500 steps. Table 11 row 2 reports the mask coverage of the pose refinement for this frame after
these two stages. In the third stage, we optimize the whole sequence, using the frame from the previous stage as initialization.
Note that this time step is selected based on the maximal mask area, so it could be in the middle of a sequence. If this is
the case, we need to optimize the loss temporally in both directions. For each next time step to optimize, we use its nearest
optimized time step as initialization. We optimize 500 steps for each frame. Table 11 row 3 reports the final mask coverage
across the sequence. Note that the mask coverage drops compared to the first frame; this is because for sequences with fast
motion or where the object is severely occluded due to manipulation, the pose might lose track and accumulate errors.

9. Text Instructions and Annotations

In this section, we provide the prompts and examples used to create the instruction scripts and for annotation augmentation,
along with details about the annotation interface.

9.1. Prompts and Examples for scenario grouping

In the scenario grouping phase, we start with verb pools extracted from multiple hand datasets. Our goal is to find objects
corresponding to these verbs within various scenarios, enabling us to act out the associated actions. We prompt the LLM
with specific instructions to generate verb-object pairs. From the LLM’s outputs, we select reasonable verb-object pairs that
can be filmed on a tabletop setting. Here is an example to find objects associate with the verb ‘beat’.

Task: Using the verb "beat," generate a list of objects that can be acted upon
with this verb in various scenarios. Ensure the objects are relevant and
specific to the given context.

Scenarios

1. Cooking: Identify objects or ingredients commonly associated with "beat" in
culinary activities.

2. Entertainment: List objects or tools that can be "beat" in entertainment or
recreational contexts.

3. Housework: Suggest items or surfaces that are "beat" during cleaning or
household chores.

4. Crafting: Find materials or tools that involve "beat" as part of a creative or
crafting process.

5. Office Work: Consider any metaphorical or literal uses of "beat" with objects
in an office or work environment.

Requirements:

1. Ensure that each object aligns with the context of the scenario.

2. Provide a diverse and creative range of examples for each scenario.
3. Be specific about the relationship between "beat" and the object.

9.2. Prompts and Examples for Scene structuring

In the scene structuring phase, we have already associated each scene with verbs and objects, organizing them through
activities. However, in the manually designed raw activity scripts, some verbs related to the activities might be missing. To
address this, we provide the LLM with a prompt to add the missing verbs to the scenes. For example below, we augmented



the ”playing cards” part within the ”Playing Monopoly, Cards, Coins, and Knucklebones” scene. After obtaining the output
from the LLM, we perform a sanity check to ensure accuracy and coherence.

x*xRefined Prompt for Playing Cards Scriptxx

You are tasked with refining a script for playing cards. The script must follow
the format: #*x*[verb-ing]: detailed description**. Several actions are missing,
and you need to incorporate them into the sequence of actions in the correct
position while ensuring the script is clear, organized, and detailed enough for

a hand actor to act out.

Instructions:

1. Follow the format: Each action is described with a verb ending in "-ing" and
its detailed description.

2. Include the following missing actions: scatter, slide, split, swap, wave.

3. Ensure the scenario is consecutive: The sequence of actions should flow
logically without gaps.

4. Provide detailed hand action descriptions: Describe how the hands move, grip,
and interact with the cards for clarity and precision.

5. This script is for a hand actor to act out. The quality of your addition and
organization will determine the final output.

6. Ensure the sequence of actions forms a coherent and consecutive scenario.

If you revise the script well, I will reward you $20.

Original Script:

Play Cards

— [Bridge Shuffling]: Hold the deck with your right hand. Use your thumb and
middle finger to grip the deck on the short sides, with your index finger
resting along the long edge of the deck. Do the bridge shuffle.

- [Regular Shuffling]: Shuffle the deck of cards by interweaving them with your
hands, mixing them thoroughly.

— [Cutting + Dealing]: Cut the deck of cards in half using a quick motion,
separating it into two smaller decks. Deal the cards to the players one by one,

distributing them evenly.

- [Flipping]: Flip the top card of the deck face-up, revealing its wvalue or suit.

- [Fanning + Checking + Sorting]: Fan out the cards in your hand, creating a
spread of cards that can be easily viewed. Check the value of your cards by
looking at them without revealing them to others. Sort the cards in your hand
according to their suits or numerical order.

— [Drawing + Discarding]: Draw a card from the deck and add it to your hand,
increasing the number of cards you hold. Discard a card from your hand by
placing it face-down on a designated discard pile.

— [Collecting + Stacking]: Collect the cards from all players after a round of the

game has ended. Stack the cards on top of each other, forming a neat pile.



9.3. Prompts and Examples for instruction scripting

In the instruction scripting phase, we already have an activity script for each scene, where each activity is associated with
a list of verbs that occur sequentially. Our goal here is to expand each verb into a complete instruction that helps fulfill the
activity. We provide the LLM with a prompt to achieve this expansion. For instance below, we applied this process to an
activity in the "Making and Drinking Tea” scene. After receiving the output from the LLM, we conducted three rounds of
sanity checks to ensure the instructions were accurate and coherent.

You are tasked with refining and structurizing the given hand action script. The
final script must follow these guidelines:

1. Format: Each action must follow the format ‘[verb-ing]: detailed description of
the action.®

2. Retain All Verbs: Do not delete or remove any verbs provided in the brackets.

3. Separate Multiple Verbs: If a bracket contains multiple verbs, split them into
individual actions, each with its own description.

4. Expand Missing Verbs: If a verb is implied but not explicitly described in the
action, add it with an accurate and detailed description.

5. Verb Format: Change all verbs into the present participle format (‘-ing‘' form).

6. Clarity and Detail: Ensure the descriptions are clear, precise, and detailed
enough for a hand actor to perform the actions.

Example:

Original Action:

‘[grip, set, 1lift]: Grip the teapot 1lid with the right hand, 1lift it, and set it
aside.®

Refined Actions:

- [Gripping]: Grip the teapot 1lid firmly with the right hand.

- [Lifting]: Lift the teapot 1lid straight up, keeping it steady.
- [Setting]: Set the teapot 1lid down gently on a flat surface.

9.4. Annotation Interface

For the annotation phase, we already have the instruction scripts and the motion sequences filmed accordingly. Our task is to
annotate any actions that were not mentioned in the original instruction scripts. Figure 7 illustrates the annotation interface
we used. This interface loads the filmed multi-view videos with the hand mesh rendered on top for visual clarity. The
original instruction is displayed below the video. Features such as a progress bar and controls like “Play,” “+1 Frame,” and
“-1 Frame” buttons are provided to accurately segment the motion sequence. Additionally, buttons like “Match Annotation,”
“Add Annotation,” “Remove Annotation,” “Split Video,” and “Remove Split” are available to correct or refine the original
instructions.

9.5. Prompts and Examples for text augmentation

In the text augmentation phase, we have the motion clips along with their text annotations. To enhance the diversity of
descriptions, we aim to augment these annotations since one action can be described in multiple ways. We feed the LLM
with a specific prompt for text augmentation. Outputs such as system errors or phrases like “I’'m sorry” are removed to
maintain data quality and consistency.

You are a sentence rewriter. Your task is to rewrite the provided input sentence
into five different variations. You can vary the verbs and descriptions but
*xdo not add any new actions or change the original meaningxx.



Figure 7. Annotation Interface.

Instructions:

- Begin the output with: "Rewritten Sentences:"

- Each sentence should be separated by the symbol "$"

— Use different verbs or phrasing to achieve natural, varied expressions
without changing the action or intent of the original sentence.

Example:

Input: "Take out an egg from the carton.\n"

Output: Rewritten Sentences: Remove an egg from the carton. $ Pick out an egg from
the carton. $ Pull an egg from the carton. $ Grab an egg from the carton. $
Lift an egg from the carton.

10. Dataset Inspection
10.1. Object Visualization.

Figure 8 shows 96 of the objects in GigaHands by randomly select a few objects each scene. The objects spans diverse
scenarios and functionalities.



Figure 8. Randomly Sampled Objects.

10.2. Verb Pool.

GigaHands contains a total of 1467 verbs. Table 12 and Tab. 13 shows the most frequent and least frequent verbs in the text
annotation.



place take use put press set open remove
position move hold pull seize apply pick lift
secure slide grab lay turn grasp tap push
extract clutch insert shift detach fasten adjust grip
rest twist rotate arrange snatch hit spread return
close retrieve employ release loosen squeeze drop flip
glide rub make click fold attach touch clean
cut get leave raise sweep wipe switch collect
shut seal transfer cover snap draw withdraw keep
spin swipe select separate strike perform shake toss
bring utilize pour extend activate | compress stretch smooth
pinch ease execute unseal pluck tighten lock dab
gather uncap throw scoop roll break create hoist
give brush flick change reduce wrap elevate fill
trim clasp work engage | distribute swivel slice increase
drag deposit slip fetch unfold split let flatten
pat pass fit add divide bend peel dispense
decrease mix deliver connect agitate trace organize choose
undo stick form guide gesture clip continue swing
play blend disconnect tear stir wiggle carry tilt
alter direct affix coat run modify unzip uncover
clench dry shape present mark maintain depress sketch
slow massage speed lessen replace rip wind join
reach submerge unplug wave capture immerse bind reveal
point crush accelerate | diminish fix swirl straighten | navigate
snip carve ensure restore free strip combine unroll
obtain handle store tie wash sway repeat strum
intensify lower disengage aim plug chop quicken unwind
catch jiggle reverse go thread revolve stroke identify
display pound jostle render | highlight coil knock pretend
stack relocate scroll untangle rinse show amplify clap
beat start enhance wrench spoon tidy align pop
zip acquire unravel shave punch widen indicate enter
write dump assemble | remover launch loop knot crack
curl encircle weave plunge do opt soak suspend
enclose | lengthen examine drizzle dispose fle sprinkle pump
expand unhook grind send build clamp nudge smack
relax operate stow pack hasten tickle shear buckle
interlock whisk act dunk lean stop hurl shuffle
hand caress flex envelop slot drive shoot introduce

Table 12. Most Frequent 320 Verbs.

10.3. List of Scenarios and Scenes.

Table 14 presents all of the scenarios and scenes in GigaHands.
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