Hybrid Reciprocal Transformer with Triplet Feature
Alignment for Scene Graph Generation
Appendix

1. Algorithm Details

1.1. Triplet-Guided Relation Learning with Bidi-
rectional Refinement

The principal innovation of our study lies in the model ar-
chitecture, particularly the triplet-guided relation learning
with bidirectional refinement. This involves two interac-
tion paradigms between hybrid triplet-level and component-
level representations within a hybrid reciprocal transformer
model. The first paradigm utilizes triplet-level represen-
tations as conditions to iteratively guide component-level
learning within the same layer of the hybrid reciprocal
transformer [4]. The second involves bidirectional refine-
ment between triplet-level and component-level representa-
tions through the use of cross-attention mechanisms across
successive layers of the hybrid reciprocal transformer [10].

The algorithmic pipeline is detailed in Alg. 1. This al-
gorithm integrates two key interaction paradigms: triplet-
guided relation learning and a bidirectional refinement
mechanism. These paradigms are applied iteratively in each
layer of the hybrid reciprocal transformer. Alg. 1 specifi-
cally outlines the process of triplet-guided relation learn-
ing in Lines 2-9. Here, the decoders T;;x € {t,s,0,p}
are tailored to sequentially process triplet masks, subjects,
objects, and predicates. This is achieved by splicing the
processed results within the current layer of the hybrid re-
ciprocal transformer, thus facilitating iterative component-
level learning guided by triplets using processed position
embedding PJ; 2 € {s,0,p}. Lines 10-13 discuss the imple-
mentation of the bidirectional refinement mechanism. This
mechanism concurrently advances triplet-level learning and
component-level learning, thereby mutually enhancing each
aspect. The rationale for this bidirectional refinement is
supported by the observation that the processed results for
triplet-level representatlons Qj and component-level repre-
sentations QI, x € {s,o,p} in each layer depict not only
identical visual relation tuples but also exhibit inherent con-
nectivity, underscored by the alignment loss.

In the hybrid reciprocal transformer, the process results
Qi;z € {ts.0.p} for each layer are stored for intermedi-

Algorithm 1 Pipeline for Triplet-Guided Relation Learning
with Bidirectional Refinement

Require: 7,;z € {ts,0,p}
isx € {ts,0p},j € {1,..., M}
Pi;z € {ts,op},j€{l,.., M}
Ensure: Q) z € {ts,op}je{l,.., M}
1: for j =1to M do

2: Pj = Rj

3 QI =T7(Q"|P,1)

4 PI=PI+FFN(MHA(P! Q].Q1))

s: QL =T)(QU P, 1)

6: PI=PI-+FFN(MHA(PJ [Q] Q11.1Q1. Q1))

7 Q) =T3(Q4 P, T)

8 D= PJ+FFN<MHA<P3 Q7. QLQU. Q1. QL.Ql))
9: Qf— F QIR n

10: QJ—QJ+FFN(MHA(Q{,[QM} 11)); x € {s.0.p}
11: QJ—QJ+FFN(MHA(Q2 Q, Q1))

12: QL =Q+FFN(MHA(QL, @7, Q7))

13: Q)=Q)+FFN(MHA(Q], Q. QY))

14: end for

—_—
W

. return QJ;x € {ts,0,p},j € {1,..., M}

ate supervision in triplet and component learning, respec-
tively. Additionally, Q7;x € {ts,0,p} are utilized to ini-
tialize the next layer of the hybrid reciprocal transformer,
thereby feeding into the subsequent layer from the pro-
cessed results of the current layer as classic transformer-
based detection methods [1]. The final output Qi;z €
{ts,0,p},7 € {1,..., M} from multiple layers of the hy-
brid reciprocal transformer is processed by same prediction
heads to supervise both intermediate and final outputs. This
enhances model accuracy by providing feedback at vari-
ous points within the network. During training, indepen-
dent matching aligns each prediction with its corresponding
ground truth, addressing the inherent permutation invari-
ance of outputs characteristic of transformer architectures.
Furthermore, independent matching in our hybrid triplet-
level and component-level learning ensures that the output



Figure 1. Matching process to calculate @gc, x € {t;s,0,p} and calculation process of triplet feature alignment loss. The dashed line
illustrates a group of matched hybrid representations from triplet and component levels to calculate cosine similarity in one position of the

predicted similarity matrix.

from each layer is individually aligned using an alignment
loss. This maintains high alignment performance in cal-
culating alignment loss, independent of other layers’ influ-
ence. This multi-stage supervision and matching strategy,
combined with our proposed triplet-guided relation learn-
ing and bidirectional refinement mechanism, aids in early
prediction error correction and robust feature representation
development. Such integration improves overall detection
performance by effectively bridging the gap between hybrid
triplet-level and component-level learning representations.

1.2. Triplet Feature Alignment Loss

The proposed alignment loss function is designed to harmo-
nize the triplet-level representations with their correspond-
ing component-level representations. This is achieved by
fostering high similarity between matched pairs of triplet-
level and component-level representations within the same
visual relation tuple, while simultaneously discouraging
similarity among unmatched hybrid representation pairs.
The alignment loss function plays a critical role in enhanc-
ing the distinctiveness of the triplet features corresponding
to their component-level representations. This is partic-
ularly useful for distinguishing objects that play multiple
roles within an image, leveraging uniquely aligned seman-
tic triplet features.

Specifically, the triplet feature alignment loss is com-
puted using the predicted similarity matrix S’ of each layer
of hybrid reciprocal transformer and ground truth similar-
ity matrix Sgy. The alignment loss effectively exploits
the inherent one-to-one correspondence between the ground
truth triplet mask and the component-level bounding boxes
for subjects, objects, and predicates. This process not
only facilitates feature distillation across hybrid representa-

tions but also enhances the exploration of interconnections
among these representations.

To compute the predicted similarity matrix S7 for the
j-th layer outputs of the hybrid reciprocal transformer, we
ﬁrst derive the valid matching output features, denoted as

;z € {ts,0,p}, from the raw output features QI. The
features QJ represent those query outputs in QJ that suc-
cessfully matched with the ground truth triplet mask and the
respective subject, object, and predicate bounding boxes.
Subsequently, we construct the pseudo triplet-level repre-
sentation Q/ as a weighted sum of the component-level rep-
resentations @gc, x € {s,0,p}. This representation Qt’ is uti-
lized to compute the cosine similarity with @j t, as outlined
in Eq. 8 of our submitted paper.

Ground truth similarity, denoted as Sgr, quantifies the
inherent correspondences derived from the integration of
triplet masks with their associated bounding boxes for sub-
jects, objects, and predicates. As depicted in Figure 1, Sgr
adheres to a one-hot encoding scheme across each row and
column, where each row uniquely corresponds to the com-
bined subject, object, and predicate information encapsu-
lated by a triplet mask. Specifically, if a given row in-
dicative of a triplet mask aligns accurately with its respec-
tive visual relation components—subject, object, and pred-
icate—the ground truth assignment is encoded as one; oth-
erwise, it is set to zero.

Figure 1 illustrates the alignment between the ground
truth and predicted results. Specifically, for a given ground
truth visual relation tuple consisting of a triplet mask and
the associated subject, object, and predicate—indicated
by dashed lines—we employ both individual triplet mask
matching and component-level matching [6] for the sub-



ject, object, and predicate to monitor their respective output
features. In the ground truth similarity matrix, the corre-
sponding entries for these paired results are assigned a value
of one. Conversely, in the predicted similarity matrix, the
same entries are populated with the cosine similarity val-
ues computed from the tracked triplet mask representation
and pseudo triplet representation from the sum of subject,
object, and predicate representations. For the query repre-
sentation of the triplet mask highlighted by the dashed line
in Figure 1, the ground truth similarity values for any other
matched subject, object, and predicate from differing paired
visual relations are set to zero. This differentiation is cru-
cial to accurately distinguish between the features of each
triplet and help different semantics of multi-role objects.

2. Implementation Details

For the experiment in both Visual Genome (VG) dataset [7]
and Action Genome (AG) dataset [3], we use exactly the
same model architecture. We utilize a ResNet-101 back-
bone [2] to crop four scales of image features. Then the
last scale of the image feature is processed with a six-
layer transformer encoder with hidden size 512. For each
part in T,;2 € {ts,0,p} of the hybrid reciprocal trans-
former, we deploy a six-layer transformer decoder archi-
tecture. The query number for component-level learning
is 600 for 77;z € {s,o,p}, and 300 for 7. The triplet
matching strategy employs a naive Hungarian algorithm,
optimizing for mask loss, dice loss, and classification loss
with weights of 5.0, 5.0, 1.0. For component-level match-
ing, the approach adopts a grouping matching strategy as
proposed in [6], ensuring consistency of subject, object, and
predicate in same matched indices of their decoders. Both
triplet mask matching and component subject, object, and
predicate matching apply the one-to-many matching mech-
anism, the actual ground truth similarity matrix follows the
extended one-hot formatting, where one value may occur as
the same time as the multiple matching number in one-to-
many matching to maintain consistency. The model under-
goes pretraining on the VG and AG datasets, focusing on
object detection and semantic segmentation, respectively.
The trained parameters for mask segmentation and box de-
tection are copied into their corresponding position in the
hybrid reciprocal transformer to initialize model weights. In
the complete model configuration, we employ the AdamW
optimizer [9] for training purposes, initiating with a learn-
ing rate of 6e-4. This rate is gradually reduced following a
cosine annealing schedule [8]. The training process extends
over 150,000 steps, consistently applied across both the VG
and AG datasets. All experiments are conducted on four
A40 GPUs, utilizing a batch size of 16.

3. Ablation Study and Analysis Details
3.1. Hybrid Representation Guidance Order

We reverse the triplet-guide mechanism to observe the in-
teraction among the triplet-level and component-level rep-
resentations. The reversed mechanism can be shown as:

Q= THQI P, T);x € {sopit},

P =PpJ,

PJ = PI + FEN(MHA(P?, @7, Q?)),

PJ =PI + FEN(MHA(PZ, [Q7, Q). 17, QI])).

BJ = P} + FFN(MHA(P, [Q2, @2, Q21 [Q,Q, Q3))).

This mechanism uses component-level learning represen-
tation to guide triplet mask learning. The evaluation met-
ric from R@50/100, and mR@50/100 are 33.2, 36.9, 15.3,
and 18.9 respectively. This decreasing performance com-
pared to our vanilla model is attributed to the fact that triplet
mask learning representation contains the global feature
for a visual relation triplet feature, the global feature can
boost the following performance of component-level sub-
ject, object, and predicate detection. The reversing process
will not leverage the global feature to enhance following
component-level learning, and lose some precision in met-
ric.

3.2. Grouping Hybrid Representations in Uniform
Matcher

In [6], the authors use a groupwise same matched indices
among subject, object, and predicate for the consistency in
calculation of scores of visual relation tuples from multiply
of subject, object, and predicate scores. Inspired by [6], we
explore to group triplet mask with component-level subject,
object, and predicate in a hybrid uniform matcher to replace
the alignment loss. The hybrid uniform matching of hybrid
triplet and component representations refers to all of them
follows the same matched indices between output and tar-
gets.

Specifically, the hybrid uniform matcher follows the de-
sign of [6] but add extra optimization target for triplet mask,
which contains mask loss, dice loss, and classification loss
with weights of 5.0, 5.0, 1.0. We edit the query number for
both triplet mask and component subject, object, and pred-
icate as 300 in the experiment. Table 3 in original paper
presents a comparative analysis of the outcomes, employing
varied matching ratios between component and triplet lev-
els in the uniform hybrid matcher. The study’s results sug-
gest that integrating hybrid representations through a hybrid
uniform matching mechanism results in performance that
is suboptimal when compared to that of our vanilla model.
More precisely, diminishing the granularity of component-
level matching adversely affects the effectiveness of the
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Figure 2. Visualization results of the triplet mask from our method, and its corresponding visual relation in VG datasets.

system. The experimental results demonstrate that there
is a significant discrepancy between the triplet-level and
component-level representations due to their distinct pat-
terns. Directly matching them with hard constraints via a
uniform matcher can adversely impact the overall efficacy
of the learning process.

3.3. Matching of Hybrid Representations in Infer-
ence Stage

Traditional one-stage scene graph methods [4-6] use the
multiply results from bitwise subject, object, and predicate
classification scores to crop the top part to organize final vi-
sual relation detection results. Due to our extra triplet mask

representation for each visual relation compared to tradi-
tional methods, we explore the potential to multiply triplet
mask scores with previous component-level multiply results
together to calculate the final scores for each detected visual
relation.

In our submission paper, we compare three different
model variants as outlined in Table 5. The first variant, re-
ferred to as our vanilla model, solely multiplies component-
level scores. The second variant multiplies the scores of
triplet masks directly with component scores. The third
variant employs Hungarian matching to align the order of
triplet mask scores with that of component-level predic-
tions before multiplication. Our experimental results indi-



Figure 3. Qualitative results of our methods on VG datasets. Left part is the original image, right part is the constructed scene graph by our
method. Dashed rectangle marks our correct detected visual relation that is not annotated in ground truth.

cate that direct multiplication negatively impacts the over-
all performance of scene graph generation. This degrada-
tion is attributed to the triplet masks following a different
order compared to the component-level results, thereby in-
troducing noise during the multiplication process and dis-
rupting the ordering of visual relation tuples. Although the
third variant demonstrates a slight improvement over the
vanilla model—attributable to Hungarian matching, which
realigns the triplet mask scores to match the distribution of
component-level results—we opt not to integrate this vari-
ant into the vanilla model due to its increased inference
time, resulting in lower frames per second (FPS). Specifi-
cally, across all the VG test dataset, while our vanilla model
achieves 11.4 FPS, the third variant reaches only 2.4 FPS
due to the matching process in the inference stage.

4. Qualitative Results
4.1. Triplet Mask with Visual Relation

We present the output results of our triplet mask alongside
the corresponding visual relation tuples in Figure 2. The vi-
sualization demonstrates that our method can generate var-
ious triplet masks and precisely assigns the triplet mask to
specific visual relation tuples across various scenarios. This

precision allows for the accurate delineation of the subject,
object, and predicate components within our hybrid recip-
rocal transformer, where the triplet mask features help to
leverage global information at the triplet level. Further-
more, based on the accurate triplet masks output, our novel
alignment loss not only aligns the triplet and component
features but also enables the utilization of aligned triplet
features to differentiate the semantic meanings of multi-role
objects, thereby enhancing the performance of scene graph
generation.

4.2. Scene Graph

We present detailed visualization results of the scene graph
generation by our method in Figure 3. The red dashed
rectangle highlights the visual relations correctly identi-
fied by our method but not annotated in the ground truth.
Our method is capable of identifying challenging visual re-
lationships, such as {vegetable-of-pizza}, which exempli-
fies the effectiveness of our approach in extreme scenarios.
These qualitative results demonstrate that our method can
accurately construct scene graphs across multiple images,
thereby significantly enhancing the understanding of the en-
tire visual relationship graph.
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