
Iterative Predictor-Critic Code Decoding for Real-World Image Dehazing

Jiayi Fu1 Siyu Liu1 Zikun Liu3 Chun-Le Guo1,2

Hyunhee Park4 Ruiqi Wu1 Guoqing Wang5 Chongyi Li1,2*

1VCIP, CS, Nankai University 2NKIARI, Shenzhen Futian
3Samsung R&D Institute China-Beijing 4CIG, Samsung Electronics

5Donghai Laboratory, Zhoushan, Zhejiang
{fujiayi,liusiyu29}@mail.nankai.edu.cn, zikun.liu@samsung.com,

guochunle@nankai.edu.cn, inextg.park@samsung.com,

wuruiqi@mail.nankai.edu.cn, gqwang0420@hotmail.com, lichongyi@nankai.edu.cn

Abstract

This supplementary material presents the network architec-
tures, objective functions, further ablation experiments, and
more visual results. Specifically, in ablation experiments,
we include ablation results on the real-world URHI dataset
to validate the effectiveness of the Code-Critic in Sec. 3.1.
Besides, throughout the paper, we typically set T = 8. To
justify this setting, we discuss the effect of the number of
iterations in Sec. 3.2.

1. Network Architectures
The structural details of IPC-Dehaze are shown in Tab. 1. In
VQGAN, we use a network structure similar to FeMaSR [1]
and set the codebook size K to 1024 and embedding dim
to 256. To achieve code matching and code evaluation at
different resolutions, we use RSTB [11] as the backbone
and add a linear projection layer.

2. Objective Functions
2.1. Pretrain: VQGAN Training
Following VQGAN, we adopt pixel-level reconstruction
loss L1 and code-level loss Lcode to train the Encoder EH ,
Decoder DH , and Codebook C:

L1 = ∥Ih − Irec∥1, (1)

Lcode = ∥sg(zc)− Z
(i,j)
h ∥22 + β∥zc − sg(Z

(i,j)
h )∥22

+ λg∥CONV(Z
(i,j)
h )− Φ(Ih)∥22,

(2)

where sg(·) is the stop-gradient operation, β = 0.25 and
λg = 0.1 in this training. The CONV(·) and Φ(·) denote
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a convolution layer and a pre-trained VGG19 [13], respec-
tively.

To restore better texture, we use perceptual loss Lper [9],
and adversarial loss Ladv [5] as part of the loss function:

Lper = ∥Φ(Ih)− Φ(Irec)∥1, (3)

Ladv = logD(Ih) + log(1−D(Irec)). (4)

In the pre-training stage, the loss is expressed as:

LV QGAN = L1 + Lcode + Lper + λadvLadv, (5)

where λadv = 0.1.

2.2. Stage I: Code-Predictor Training
In this training stage, we use L1, Lper, and Ladv to train the
Encoder EL. In addition, we use the cross-entropy loss Lθ

to train the Code-Predictor. The total loss is expressed as:

Lθ = −
N∑
i=0

S
(i)
h log pθ(S

(i)|Zt), (6)

Ltotal = L1 + Lper + λadvLadv + Lθ, (7)

where λadv = 0.1, Sh is the code sequence from the clean
image, and S is the code sequence predicted by Code-
Predictor. Zt denotes the fused tokens and pθ denotes the
output distribution of Code-Predictor.

2.3. Stage II: Code-Critic Training
In the training stage II, we keep all other modules fixed,
exclusively train the Code-Critic, and utilize only binary
cross-entropy loss:

Lϕ = −
N∑
i=0

M (i) log pϕ(S
(i))+(1−M (i)) log(1−pϕ(S

(i))),

(8)



Layers Configuration Output Size

Conv in cin = 3 cout = 64 ksz = 4 (h,w, 64)

Block1 cin = 64 cout = 128 ksz = 3 stride = 2 (h/2, w/2, 128)

Block2 cin = 128 cout = 256 ksz = 3 stride = 2 (h/4, w/4, 256)

Before quant cin = 256 cout = 256 ksz = 1 stride = 1 (h/4, w/4, 256)

RSTB block1


ws = 8
d = 256
head = 8
depth = 6

× 4 (h/4, w/4, 256)

Norm1 d=256 (h/4, w/4, 256)

Linear1 fin = 256 fout = 1024 (h/4, w/4, 1024)

RSTB block2


ws = 8
d = 256
head = 8
depth = 6

× 2 (h/4, w/4, 256)

Norm2 d=256 (h/4, w/4, 256)

Linear2 fin = 256 fout = 1 (h/4, w/4, 1)

Codebook K = 1024 d = 256 (h/4, w/4, 256)

After quant cin = 256 cout = 256 ksz = 3 stride = 1 (h/4, w/4, 256)

Upsample ratio=2 (h/2, w/2, 256)

Block3 cin = 256 cout = 128 ksz = 3 stride = 1 (h/2, w/2, 128)

SFT block1 cin = 128 cout = 128 ksz = 3 stride = 1 (h/2, w/2, 128)

Upsample ratio=2 (h,w, 128)

Block4 cin = 128 cout = 64 ksz = 3 stride = 1 (h,w, 64)

SFT block2 cin = 64 cout = 64 ksz = 3 stride = 1 (h,w, 64)

Conv out cin = 64 cout = 3 ksz = 3 stride = 1 (h,w, 3)

Table 1. Architecture details of the IPC-Dehaze. Blue, green,
brown, and yellow represent the layers of VQGAN, Code-
Predictor, Code-Critic, and SFT, respectively. cin, cout, and ksz
are the input channel, output channel, and kernel size, respectively.
The ws is the window size and d is the embedding dim. fin is the
number of input features and fout is the number of output features.
The input of the network is an RGB image ∈ Rh×w×3.

where M = (Sh ̸= S) and pϕ denotes the output of Code-
Critic.

Since the Code-Critic module is only trained to make an
accurate evaluation of Code-Predictor’s diverse cases, we
introduce the sampling temperature when Code-Predictor
samples the code sequence S. The partial code is shown in
Fig. 1.

3. Ablation Experiments

3.1. Effectiveness of Code-Critic

To further discuss the necessity of Code-Critic, we com-
pare the sampling method based on code confidence and
that based on Code-Critic. We conduct quantitative expe-
rience on two real-world datasets RTTS and URHI [10],
which both contain over 4,000 images. We present the re-
sults in Tab. 2.

1 #Fuse the hq_feats and lq_feats with mask
2 input_feats=hq_feats*˜mask+lq_feats*mask
3 # Get the logits with [b, h*w, K].
4 logits = net_predictor.transformer(input_feats)
5 # Add sampling temperature
6 logits/=Tem
7 probs = F.softmax(logits, -1)
8 # Samples the id.
9 sampled_ids = torch.multinomial(probs), 1)

10 # Evaluate the sampled_ids
11 masked_logits = net_critic(sampled_ids,h,w)

Figure 1. Partial code for Code-Critic Trainin.

Table 2. Quantitative ablation analysis of the Code-Predictor. Red
indicates the best results. In this experiment, we set T = 8.

(a) Results on RTTS.
Method MUSIQ↑ PI↓ MANIQA↑ CLIPIQA↑ Q-Align↑ TOPIQ↑

NN Matching Based 58.19 3.25 0.303 0.391 3.25 0.458
Ours (w/o Code-Critic) 57.74 3.32 0.303 0.412 3.36 0.462

Ours 59.60 3.22 0.327 0.44 3.49 0.500

(b) Results on URHI.
Method MUSIQ↑ PI↓ MANIQA↑ Q-Align↑

NN Matching Based 62.06 3.01 0.350 3.48
Ours (w/o Code-Critic) 60.51 3.13 0.343 3.55

Ours 62.50 3.08 0.364 3.70

3.2. Iteration Number

We investigate the impact of varying the iteration number
T on inference performance, as summarized in Tab. 3. To
balance performance and efficiency, we set T = 8 as the
default. As shown in Tab. 3, reducing T slightly degrades
performance but still outperforms other methods. For faster
inference, a smaller T can be selected without the need for
network retraining.

Table 3. Quantitative analysis of the different iteration numbers.
Red indicates the best results.

T MUSIQ↑ PI↓ MANIQA↑ CLIPIQA↑ Q-Align↑ TOPIQ↑
3 58.40 3.33 0.314 0.425 3.43 0.478
4 58.71 3.31 0.318 0.431 3.45 0.484
6 58.97 3.30 0.321 0.437 3.47 0.490
8 59.60 3.22 0.327 0.444 3.489 0.500

10 59.23 3.28 0.325 0.442 3.488 0.496

4. Visual Results

4.1. Visualisation of Iterative Decoding

Fig. 2 visualizes the iterative process, and it can be seen that
during the iterative process, our results get better and better
in terms of dehazing, image quality, and visual effects.
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Figure 2. The top-left shows the input image, while the top-right displays our result. Below, the images from left to right depict the
intermediate results of the iterative decoding process when T = 8.



4.2. More Visual Comparisons
Figs. 3 to 5 show visual comparisons on the RTTS,
URHI [10] and Fattal [6] datasets. We compare our method
with the methods that have achieved outstanding results in
benchmarks: MSDBN [4], Dehamer [8], and DEA-Net [3]
as well as real-world image dehazing methods: DAD [12],
PSD [2], D4 [15], RIDCP [14], and KA-Net [7]. The re-
sults show that our method can achieve more natural, high-
quality images, especially in dense hazy areas, which is a
significant improvement compared to other methods.

4.3. Failure Case
In this part, we discuss the failure case of our method. To be
specific, our method exhibits a progressive approach to de-
hazing, processing denser haze regions first and gradually
moving to thinner regions during iterative dehazing. This
gives us a distinct advantage in handling depth-continuous
scenes, as high-quality codes from earlier iterations can
serve as cues for the Code-Predictor to refine subsequent
predictions. However, the performance is limited in depth-
discontinuous scenes, as illustrated in Fig. 6. While our
method performs exceptionally well in depth-continuous re-
gions (outside the red box), it struggles as the other methods
in depth-discontinuous regions (inside the red box, such as
trees or rocks). Such depth-discontinuous scenarios present
significant challenges for all existing dehazing methods.
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Figure 3. Visual comparison on RTTS. Zoom in for best view.
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Figure 4. Visual comparison on Fattal. Zoom in for best view.
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Figure 5. Visual comparison on URHI. Zoom in for best view.
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Figure 6. Failure Case. As shown in the red boxes, depth-discontinuous regions present significant challenges for existing dehazing
methods. While our method performs well in the depth-continuous regions outside the red box, it struggles inside the red box, where trees
and rocks disrupt depth continuity, rendering our method as ineffective as other approaches.
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