
Iterative Predictor-Critic Code Decoding for Real-World Image Dehazing

Jiayi Fu1 Siyu Liu1 Zikun Liu3 Chun-Le Guo1,2

Hyunhee Park4 Ruiqi Wu1 Guoqing Wang5 Chongyi Li1,2*

1VCIP, CS, Nankai University 2NKIARI, Shenzhen Futian
3Samsung R&D Institute China-Beijing 4CIG, Samsung Electronics

5Donghai Laboratory, Zhoushan, Zhejiang
{fujiayi,liusiyu29}@mail.nankai.edu.cn, zikun.liu@samsung.com,

guochunle@nankai.edu.cn, inextg.park@samsung.com,

wuruiqi@mail.nankai.edu.cn, gqwang0420@hotmail.com, lichongyi@nankai.edu.cn

Abstract

This supplementary material presents the network architec-
tures, objective functions, further ablation experiments, and
more visual results. Specifically, in ablation experiments,
we include ablation results on the real-world URHI dataset
to validate the effectiveness of the Code-Critic in Sec. 3.1.
Besides, throughout the paper, we typically set T = 8. To
justify this setting, we discuss the effect of the number of
iterations in Sec. 3.2.

1. Network Architectures
The structural details of IPC-Dehaze are shown in Tab. 1. In
VQGAN, we use a network structure similar to FeMaSR [1]
and set the codebook size K to 1024 and embedding dim
to 256. To achieve code matching and code evaluation at
different resolutions, we use RSTB [11] as the backbone
and add a linear projection layer.

2. Objective Functions
2.1. Pretrain: VQGAN Training
Following VQGAN, we adopt pixel-level reconstruction
loss L1 and code-level loss Lcode to train the Encoder EH ,
Decoder DH , and Codebook C:

L1 = ∥Ih − Irec∥1, (1)

Lcode = ∥sg(zc)− Z
(i,j)
h ∥22 + β∥zc − sg(Z

(i,j)
h )∥22

+ λg∥CONV(Z
(i,j)
h )− Φ(Ih)∥22,

(2)

where sg(·) is the stop-gradient operation, β = 0.25 and
λg = 0.1 in this training. The CONV(·) and Φ(·) denote

*Corresponding author

a convolution layer and a pre-trained VGG19 [13], respec-
tively.

To restore better texture, we use perceptual loss Lper [9],
and adversarial loss Ladv [5] as part of the loss function:

Lper = ∥Φ(Ih)− Φ(Irec)∥1, (3)

Ladv = logD(Ih) + log(1−D(Irec)). (4)

In the pre-training stage, the loss is expressed as:

LV QGAN = L1 + Lcode + Lper + λadvLadv, (5)

where λadv = 0.1.

2.2. Stage I: Code-Predictor Training
In this training stage, we use L1, Lper, and Ladv to train the
Encoder EL. In addition, we use the cross-entropy loss Lθ

to train the Code-Predictor. The total loss is expressed as:

Lθ = −
N∑
i=0

S
(i)
h log pθ(S

(i)|Zt), (6)

Ltotal = L1 + Lper + λadvLadv + Lθ, (7)

where λadv = 0.1, Sh is the code sequence from the clean
image, and S is the code sequence predicted by Code-
Predictor. Zt denotes the fused tokens and pθ denotes the
output distribution of Code-Predictor.

2.3. Stage II: Code-Critic Training
In the training stage II, we keep all other modules fixed,
exclusively train the Code-Critic, and utilize only binary
cross-entropy loss:

Lϕ = −
N∑
i=0

M (i) log pϕ(S
(i))+(1−M (i)) log(1−pϕ(S

(i))),

(8)



Layers Configuration Output Size

Conv in cin = 3 cout = 64 ksz = 4 (h,w, 64)

Block1 cin = 64 cout = 128 ksz = 3 stride = 2 (h/2, w/2, 128)

Block2 cin = 128 cout = 256 ksz = 3 stride = 2 (h/4, w/4, 256)

Before quant cin = 256 cout = 256 ksz = 1 stride = 1 (h/4, w/4, 256)

RSTB block1


ws = 8
d = 256
head = 8
depth = 6

× 4 (h/4, w/4, 256)

Norm1 d=256 (h/4, w/4, 256)

Linear1 fin = 256 fout = 1024 (h/4, w/4, 1024)

RSTB block2


ws = 8
d = 256
head = 8
depth = 6

× 2 (h/4, w/4, 256)

Norm2 d=256 (h/4, w/4, 256)

Linear2 fin = 256 fout = 1 (h/4, w/4, 1)

Codebook K = 1024 d = 256 (h/4, w/4, 256)

After quant cin = 256 cout = 256 ksz = 3 stride = 1 (h/4, w/4, 256)

Upsample ratio=2 (h/2, w/2, 256)

Block3 cin = 256 cout = 128 ksz = 3 stride = 1 (h/2, w/2, 128)

SFT block1 cin = 128 cout = 128 ksz = 3 stride = 1 (h/2, w/2, 128)

Upsample ratio=2 (h,w, 128)

Block4 cin = 128 cout = 64 ksz = 3 stride = 1 (h,w, 64)

SFT block2 cin = 64 cout = 64 ksz = 3 stride = 1 (h,w, 64)

Conv out cin = 64 cout = 3 ksz = 3 stride = 1 (h,w, 3)

Table 1. Architecture details of the IPC-Dehaze. Blue, green,
brown, and yellow represent the layers of VQGAN, Code-
Predictor, Code-Critic, and SFT, respectively. cin, cout, and ksz
are the input channel, output channel, and kernel size, respectively.
The ws is the window size and d is the embedding dim. fin is the
number of input features and fout is the number of output features.
The input of the network is an RGB image ∈ Rh×w×3.

where M = (Sh ̸= S) and pϕ denotes the output of Code-
Critic.

Since the Code-Critic module is only trained to make an
accurate evaluation of Code-Predictor’s diverse cases, we
introduce the sampling temperature when Code-Predictor
samples the code sequence S. The partial code is shown in
Fig. 1.

3. Ablation Experiments

3.1. Effectiveness of Code-Critic

To further discuss the necessity of Code-Critic, we com-
pare the sampling method based on code confidence and
that based on Code-Critic. We conduct quantitative expe-
rience on two real-world datasets RTTS and URHI [10],
which both contain over 4,000 images. We present the re-
sults in Tab. 2.

1 #Fuse the hq_feats and lq_feats with mask
2 input_feats=hq_feats*˜mask+lq_feats*mask
3 # Get the logits with [b, h*w, K].
4 logits = net_predictor.transformer(input_feats)
5 # Add sampling temperature
6 logits/=Tem
7 probs = F.softmax(logits, -1)
8 # Samples the id.
9 sampled_ids = torch.multinomial(probs), 1)

10 # Evaluate the sampled_ids
11 masked_logits = net_critic(sampled_ids,h,w)

Figure 1. Partial code for Code-Critic Trainin.

Table 2. Quantitative ablation analysis of the Code-Predictor. Red
indicates the best results. In this experiment, we set T = 8.

(a) Results on RTTS.
Method MUSIQ↑ PI↓ MANIQA↑ CLIPIQA↑ Q-Align↑ TOPIQ↑

NN Matching Based 58.19 3.25 0.303 0.391 3.25 0.458
Ours (w/o Code-Critic) 57.74 3.32 0.303 0.412 3.36 0.462

Ours 59.60 3.22 0.327 0.44 3.49 0.500

(b) Results on URHI.
Method MUSIQ↑ PI↓ MANIQA↑ Q-Align↑

NN Matching Based 62.06 3.01 0.350 3.48
Ours (w/o Code-Critic) 60.51 3.13 0.343 3.55

Ours 62.50 3.08 0.364 3.70

3.2. Iteration Number

We investigate the impact of varying the iteration number
T on inference performance, as summarized in Tab. 3. To
balance performance and efficiency, we set T = 8 as the
default. As shown in Tab. 3, reducing T slightly degrades
performance but still outperforms other methods. For faster
inference, a smaller T can be selected without the need for
network retraining.

Table 3. Quantitative analysis of the different iteration numbers.
Red indicates the best results.

T MUSIQ↑ PI↓ MANIQA↑ CLIPIQA↑ Q-Align↑ TOPIQ↑
3 58.40 3.33 0.314 0.425 3.43 0.478
4 58.71 3.31 0.318 0.431 3.45 0.484
6 58.97 3.30 0.321 0.437 3.47 0.490
8 59.60 3.22 0.327 0.444 3.489 0.500

10 59.23 3.28 0.325 0.442 3.488 0.496

4. Visual Results

4.1. Visualisation of Iterative Decoding

Fig. 2 visualizes the iterative process, and it can be seen that
during the iterative process, our results get better and better
in terms of dehazing, image quality, and visual effects.



As the iteration goes

(a) Hazy image (b) Ours

(c) Iterative results

 = 0  =  

As the iteration goes

(a) Hazy image (b) Ours

(c) Iterative results

 = 0  =  

Figure 2. The top-left shows the input image, while the top-right displays our result. Below, the images from left to right depict the
intermediate results of the iterative decoding process when T = 8.



4.2. More Visual Comparisons
Figs. 3 to 5 show visual comparisons on the RTTS,
URHI [10] and Fattal [6] datasets. We compare our method
with the methods that have achieved outstanding results in
benchmarks: MSDBN [4], Dehamer [8], and DEA-Net [3]
as well as real-world image dehazing methods: DAD [12],
PSD [2], D4 [15], RIDCP [14], and KA-Net [7]. The re-
sults show that our method can achieve more natural, high-
quality images, especially in dense hazy areas, which is a
significant improvement compared to other methods.

4.3. Failure Case
In this part, we discuss the failure case of our method. To be
specific, our method exhibits a progressive approach to de-
hazing, processing denser haze regions first and gradually
moving to thinner regions during iterative dehazing. This
gives us a distinct advantage in handling depth-continuous
scenes, as high-quality codes from earlier iterations can
serve as cues for the Code-Predictor to refine subsequent
predictions. However, the performance is limited in depth-
discontinuous scenes, as illustrated in Fig. 6. While our
method performs exceptionally well in depth-continuous re-
gions (outside the red box), it struggles as the other methods
in depth-discontinuous regions (inside the red box, such as
trees or rocks). Such depth-discontinuous scenarios present
significant challenges for all existing dehazing methods.

References
[1] Chaofeng Chen, Xinyu Shi, Yipeng Qin, Xiaoming Li, Xi-

aoguang Han, Tao Yang, and Shihui Guo. Real-world blind
super-resolution via feature matching with implicit high-
resolution priors. In ACM MM, pages 1329–1338, 2022. 1

[2] Zeyuan Chen, Yangchao Wang, Yang Yang, and Dong Liu.
Psd: Principled synthetic-to-real dehazing guided by physi-
cal priors. In CVPR, pages 7180–7189, 2021. 4

[3] Zixuan Chen, Zewei He, and Zhe-Ming Lu. Dea-net: Single
image dehazing based on detail-enhanced convolution and
content-guided attention. IEEE TIP, 33:1002–1015, 2024. 4

[4] Hang Dong, Jinshan Pan, Lei Xiang, Zhe Hu, Xinyi Zhang,
Fei Wang, and Ming-Hsuan Yang. Multi-scale boosted de-
hazing network with dense feature fusion. In CVPR, 2020.
4

[5] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming
transformers for high-resolution image synthesis. In CVPR,
pages 12873–12883, 2021. 1

[6] Raanan Fattal. Dehazing using color-lines. ACM TOG, page
1–14, 2014. 4

[7] Yuxin Feng, Long Ma, Xiaozhe Meng, Fan Zhou, Risheng
Liu, and Zhuo Su. Advancing real-world image dehazing:
Perspective, modules, and training. IEEE TPAMI, 46(12):
9303–9320, 2024. 4

[8] Chun-Le Guo, Qixin Yan, Saeed Anwar, Runmin Cong,
Wenqi Ren, and Chongyi Li. Image dehazing transformer
with transmission-aware 3d position embedding. In CVPR,
pages 5812–5820, 2022. 4

[9] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
ECCV, pages 694–711. Springer, 2016. 1

[10] Boyi Li, Wenqi Ren, Dengpan Fu, Dacheng Tao, Dan Feng,
Wenjun Zeng, and Zhangyang Wang. Benchmarking single-
image dehazing and beyond. IEEE TIP, page 492–505, 2019.
2, 4

[11] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. Swinir: Image restoration us-
ing swin transformer. In ECCV, pages 1833–1844, 2021. 1

[12] Yuanjie Shao, Lerenhan Li, Wenqi Ren, Changxin Gao, and
Nong Sang. Domain adaptation for image dehazing. In
CVPR, 2020. 4

[13] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. ICLR,
2015. 1

[14] Rui-Qi Wu, Zheng-Peng Duan, Chun-Le Guo, Zhi Chai,
and Chongyi Li. Ridcp: Revitalizing real image dehazing
via high-quality codebook priors. In CVPR, pages 22282–
22291, 2023. 4

[15] Yang Yang, Chaoyue Wang, Risheng Liu, Lin Zhang, Xiao-
jie Guo, and Dacheng Tao. Self-augmented unpaired image
dehazing via density and depth decomposition. In CVPR,
pages 2037–2046, 2022. 4



Hazy image KA-NetDehamer DEA-Net PSD OursRIDCP

Figure 3. Visual comparison on RTTS. Zoom in for best view.

Hazy image KA-NetDehamer DEA-Net PSD OursRIDCP

Figure 4. Visual comparison on Fattal. Zoom in for best view.



Hazy image KA-NetDehamer DEA-Net PSD OursRIDCP

Figure 5. Visual comparison on URHI. Zoom in for best view.

Hazy image KA-NetDehamer DEA-Net PSD OursRIDCP

Figure 6. Failure Case. As shown in the red boxes, depth-discontinuous regions present significant challenges for existing dehazing
methods. While our method performs well in the depth-continuous regions outside the red box, it struggles inside the red box, where trees
and rocks disrupt depth continuity, rendering our method as ineffective as other approaches.


	Network Architectures
	Objective Functions
	Pretrain: VQGAN Training
	Stage i: Code-Predictor Training 
	Stage ii: Code-Critic Training

	Ablation Experiments
	Effectiveness of Code-Critic
	Iteration Number

	Visual Results
	Visualisation of Iterative Decoding
	More Visual Comparisons
	Failure Case


