
Appendix for Quantization without Tears

A. Full Implementation Details

In this section, we present full implementation details of the
different types of tasks in our experiments.

Image Classification. We selected RepQ-ViT [6],
PTQ4ViT [14], and Percentile [5] as the primary baseline
PTQ methods to integrate with our QwT modules. Fol-
lowing [6], we randomly sampled 32 images from the Ima-
geNet [2] dataset as the calibration set to initialize the quan-
tized weights for these baseline methods. Additionally, a
separate set of 512 randomly selected images from the Im-
ageNet training set was used to initialize the parameters of
the QwT modules (excluding PTQ weights). For all net-
works, the affine transformation matrix W in QwT is im-
plemented in FP16 format to reduce model size. In ResNet,
W is further simplified as a group-wise convolution with a
kernel size of 1 and 64 channels per group.

When finetuning the QwT modules along with the
classification head for an additional epoch, we utilized
AdamW [9] as the optimizer. The batch size was set to
32 per GPU (using a total of 4 GPUs), and weight de-
cay was set to 0. The learning rate was configured to 1e-
7 for ViT [3], 5e-6 for DeiT [12] and Swin [8], 1e-5 for
ResNet [4].

In addition to the original classification loss, during
1-epoch finetuning we applied a simple distillation loss
to minimize the squared L2-distance between the full-
precision and quantized models—calculated on the output
features before the classification head (cls token for ViT and
DeiT, global average feature for Swin and ResNet), yield-
ing the finetuning objective as Lcls +Ldis (i.e., without the
combination weight hyperparameter.)

This distillation strategy is the feature mimicking
method [13], which only utilizes the penultimate features
and argues that features or activations from intermediate
layers are not necessary or even harmful. It is also worth
noting since only the penultimate features are required, fea-
ture mimicking is unsupervised.

Object Detection & Instance Segmentation. Follow-
ing [6], we randomly sampled a single image from the
COCO dataset [7] to initialize the quantized weights for
baseline PTQ methods. All other details are consistent with
the image classification case.

Image Generation. Consistent with the experimental

setup of Q-DiT [1], we selected the DiT architecture and
employed pretrained DiT-XL/2 models at a resolution of
256 × 256. Our experiments were extended to a broader
range of settings, including varying the number of sampling
steps (50 and 100) and classifier-free guidance (CFG) scales
(0 and 1.5). These results are presented in the next section.

B. More Experimental Results

In this section, we provide more comprehensive quantiza-
tion results across a range of backbones [3, 4, 8, 12] on the
ImageNet dataset [2], as summarized in Tables 1, 2, and 3.

We also show the full results for large language mod-
els in Table 4. The main text only reports the overall aver-
age accuracy on eight zero-shot commonsense QA datasets.
Table 4 lists the accuracy for each dataset separately. We
also include the results on the MMLU benchmarks, tested
in both zero-shot and five-shot modes.

The full results of image generation are summarized
in Table 5. As shown in the table, our method consistently
enhances the performance of the generative model across
all tested configurations. To provide a more intuitive un-
derstanding, we visualize the generated images under each
setting in Figure 1. Similar to the main paper, we ensured
that the noise during the generation process remains consis-
tent across all models. The visualizations further confirm
that our method reliably improves the quality of the gener-
ated images. As a further illustration, we provide several
representative images generated by our method in Figure 2.
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Figure 1. Qualitative visualization results of quantizing DiT-XL/2 on different settings.
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Figure 2. More qualitative visualization results of our method on quantized DiT-XL/2.



Table 1. Full results on ViT [3] and DeiT [12] backbones.

Network Method #Bits Size Top-1

DeiT-T

Full-precision 32/32 22.9 72.2
IGQ-ViT† [10] 4/4 - 62.5
RepQ-ViT [6] 4/4 3.3 58.2
RepQ-ViT + QwT 4/4 4.2 61.4
RepQ-ViT + QwT∗ 4/4 4.2 64.8
IGQ-ViT† [10] 6/6 - 71.2
RepQ-ViT [6] 6/6 4.6 71.0
RepQ-ViT + QwT 6/6 5.5 71.2
RepQ-ViT + QwT∗ 6/6 5.5 71.6

DeiT-S

Full-precision 32/32 88.2 79.9
IGQ-ViT† [10] 4/4 - 74.7
RepQ-ViT [6] 4/4 11.9 69.0
RepQ-ViT + QwT 4/4 15.4 71.5
RepQ-ViT + QwT∗ 4/4 15.4 75.2
IGQ-ViT† [10] 6/6 - 79.3
RepQ-ViT [6] 6/6 17.2 78.9
RepQ-ViT + QwT 6/6 20.7 79.1
RepQ-ViT + QwT∗ 6/6 20.7 79.3

ViT-S

Full-precision 32/32 88.2 81.4
IGQ-ViT† [10] 4/4 - 73.6
RepQ-ViT [6] 4/4 11.9 65.8
RepQ-ViT + QwT 4/4 15.4 70.8
RepQ-ViT + QwT∗ 4/4 15.4 72.9
IGQ-ViT† [10] 6/6 - 80.8
RepQ-ViT [6] 6/6 17.2 80.5
RepQ-ViT + QwT 6/6 20.7 80.7
RepQ-ViT + QwT∗ 6/6 20.7 80.8

ViT-B

Full-precision 32/32 346.3 84.5
IGQ-ViT† [10] 4/4 - 79.3
RepQ-ViT [6] 4/4 44.9 68.5
RepQ-ViT + QwT 4/4 59.1 76.3
RepQ-ViT + QwT∗ 4/4 59.1 78.5
IGQ-ViT† [10] 6/6 - 83.8
RepQ-ViT [6] 6/6 66.2 83.6
RepQ-ViT + QwT 6/6 80.4 83.9
RepQ-ViT + QwT∗ 6/6 80.4 84.0

Table 2. Full results on the Swin [8] backbone.

Network Method #Bits Size Top-1

Swin-T

Full-precision 32/32 113.2 81.4
IGQ-ViT† [10] 4/4 - 77.8
RepQ-ViT [6] 4/4 14.9 73.0
RepQ-ViT + QwT 4/4 19.2 75.5
RepQ-ViT + QwT∗ 4/4 19.2 79.3
IGQ-ViT† [10] 6/6 - 80.9
RepQ-ViT [6] 6/6 21.7 80.6
RepQ-ViT + QwT 6/6 26.0 80.7
RepQ-ViT + QwT∗ 6/6 26.0 80.9

Swin-S

Full-precision 32/32 198.4 83.2
IGQ-ViT† [10] 4/4 - 81.0
RepQ-ViT [6] 4/4 25.8 80.2
RepQ-ViT + QwT 4/4 33.7 80.4
RepQ-ViT + QwT∗ 4/4 33.7 81.9
IGQ-ViT† [10] 6/6 - 82.9
RepQ-ViT [6] 6/6 38.0 82.8
RepQ-ViT + QwT 6/6 45.9 82.9
RepQ-ViT + QwT∗ 6/6 45.9 82.9

Table 3. Full results on the ResNet [4] backbone.

Network Method #Bits Size Top-1

ResNet-18

Full-precision 32/32 46.8 71.0
CL-Calib† [11] 4/4 - 69.4
Percentile[5] 4/4 6.1 58.3
Percentile + QwT 4/4 6.4 68.9
Percentile + QwT∗ 4/4 6.4 69.4
CL-Calib† [11] 6/6 - -
Percentile[5] 6/6 8.9 70.7
Percentile + QwT 6/6 9.2 71.0
Percentile + QwT∗ 6/6 9.2 71.1

ResNet-50

Full-precision 32/32 102.2 76.6
CL-Calib† [11] 4/4 - 75.4
Percentile[5] 4/4 14.0 68.4
Percentile + QwT 4/4 16.0 74.5
Percentile + QwT∗ 4/4 16.0 75.8
CL-Calib† [11] 6/6 - -
Percentile[5] 6/6 19.9 76.0
Percentile + QwT 6/6 21.9 76.8
Percentile + QwT∗ 6/6 21.9 76.8

ResNet-101

Full-precision 32/32 178.2 77.3
CL-Calib† [11] 4/4 - -
Percentile[5] 4/4 23.7 74.7
Percentile + QwT 4/4 28.0 76.4
Percentile + QwT∗ 4/4 28.0 76.7
CL-Calib† [11] 6/6 - -
Percentile[5] 6/6 34.3 77.1
Percentile + QwT 6/6 38.6 77.2
Percentile + QwT∗ 6/6 38.6 77.2



Table 4. Detailed quantization results among the MMLU dataset and eight zero-shot commonsense QA datasets using LLaMA3-8B as the
backbone.

Method #Bits MMLU (0-shot) MMLU (5-shot) BoolQ PIQA SIQA HLSW WG ARC-e ARC-c OBQA QA. Avg
Full-precision 16 63.39 65.30 82.17 81.18 32.91 78.93 73.95 81.14 53.50 45.00 66.10
GPTQ 4 61.40 63.94 81.25 81.39 32.91 78.28 72.77 78.03 50.60 44.00 64.90
GPTQ + QwT 4 61.57 64.25 81.22 81.45 32.91 77.77 73.40 79.21 50.68 44.80 65.18

Table 5. Quantitative results of quantizing DiT-XL/2 on ImageNet 256× 256.

Model Bit-width (W/A) Method Size (MB) FID (↓) sFID (↓) IS (↑) Precision (↑) Recall (↑)

DiT-XL/2 (steps = 100)

16/16 FP 1349 12.40 19.11 116.68 0.6605 -

4/8

PTQ4DM 339 252.31 82.44 2.74 0.0125 -
RepQ-ViT 339 315.85 139.99 2.11 0.0067 -
GPTQ 351 25.48 25.57 73.46 0.5392 -
Q-DiT 347 15.76 19.84 98.78 0.6395 -
Q-DiT + QwT 361 15.35 19.63 104.04 0.6373 0.7478

DiT-XL/2 (steps = 100, cfg = 1.5)

16/16 FP 1349 5.31 17.61 245.85 0.8077 -

4/8

PTQ4DM 339 255.06 84.63 2.76 0.0110 -
RepQ-ViT 339 311.31 138.58 2.18 0.0072 -
GPTQ 351 7.66 20.76 193.76 0.7261 -
Q-DiT 347 6.40 18.60 211.72 0.7609 -
Q-DiT + QwT 361 5.86 18.29 221.66 0.7678 0.6915

DiT-XL/2 (steps = 50)

16/16 FP 1349 13.47 19.31 114.71 0.6601 -

4/8

PTQ4DM 339 256.15 83.45 2.73 0.0150 -
RepQ-ViT 339 324.25 142.98 2.12 0.0062 -
GPTQ 351 26.31 25.54 69.73 0.5388 -
Q-DiT 347 17.42 19.95 97.52 0.6219 -
Q-DiT + QwT 361 17.02 19.57 99.62 0.6302 0.7582
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