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A. Additional ablation studies
We present additional ablation studies on the MMSCopE
module (refer to Figure 3 (d) in the main paper) using the
ADE20K [65] dataset. Specifically, we investigate the ef-
fect of diffusion feature fusion strategies, the effect of fea-
ture map resolutions on simultaneous SS2D scans, and then
verify the impact of Pixel Shuffle and Pixel Unshuffle oper-
ations on preserving feature map details.

Effect of feature fusion in the decoder. Table 8 illus-
trates the importance of our feature fusion approach (Fig-
ure 3(c)). Direct prediction from multi-scale context feature
F ′ results in significant performance degradation (-1.0%).
While incorporating the feature map F improves perfor-
mance to 50.9%, our fusion strategy with stage-specific fea-
tures F ′

2, Fup3 Fup4 achieves the optimal performance of
51.3% mIoU. Removal of average-pooled features and not
adding F ′ to stage-specific features reduces effectiveness.
For a fair comparison, average-pooled features are included
in experiments without stage-specific features.

Input to classifier Params (M) GFLOPs mIoU

SegMAN-S 29.4 25.3 51.3

w/o stage-specific features
Concat (F ,F ′) 29.5 24.6 50.9 (-0.4)
F + F ′ 29.2 25.2 50.8 (-0.5)
F ′ 29.2 24.4 50.3 (-1.0)

with stage-specific features
w/o avg pool 29.3 25.2 50.9 (-0.4)
w/o addition 29.3 25.2 51.1 (-0.2)

Table 8. Effect of fusion strategies in the SegMAN decoder.

Effect of feature map resolution on SS2D scans. We
examine how different spatial resolutions for simultaneous
SS2D scans influence performance. In our proposed MM-
SCopE module, feature maps are rescaled and concatenated
at a resolution of H

32 × W
32 (i.e., 16 × 16 for 512 × 512 in-

put images in ADE20K). To assess the impact of higher
resolutions, we experiment with rescaling feature maps to
H
16 × W

16 (32 × 32) and H
8 × W

8 (64 × 64) resolutions. To
gather feature maps at the H

8 × W
8 resolution, we upsam-

ple the feature maps using the Pixel Shuffle operation [42],
which rearranges elements from the channel dimension into

the spatial dimension, effectively increasing spatial resolu-
tion while preserving feature information. For the H

16 × W
16

resolution, we apply Pixel Unshuffle to the H
8 × W

8 feature
maps, and Pixel Shuffle to the H

32 × W
32 .

As shown in Table 9, scanning at the proposed H
32 × W

32
resolution achieves the best performance. Scanning at
higher resolutions results in decreased mIoU scores. This
decline occurs because higher resolutions lead to reduced
channel dimensions in the feature maps after applying Pixel
Shuffle operations. Specifically, the Pixel Shuffle opera-
tion decreases the channel dimension by factors of 4 and
16 when upsampling by factors of 2 and 4, respectively.
This significant reduction in channel dimensions limits the
SS2D’s learning capacity, thereby negatively impacting per-
formance.

Impact of Pixel Unshuffle Operation. We evaluate re-
placing the Pixel Unshuffle operation with bilinear interpo-
lation when preparing feature maps for SS2D scanning at
the H

32 × W
32 resolution. Pixel Unshuffle downscales feature

maps without information loss, ensuring the downsampled
maps fully represent the original features despite reduced
spatial resolution. Processing these maps together enables
simultaneous handling of multiple scales, effectively mod-
eling multi-scale information.

As shown in Table 9, substituting Pixel Unshuffle with
bilinear interpolation reduces mIoU from 50.0% to 49.0%.
This confirms that preserving the full representational ca-
pacity during downsampling is crucial. Bilinear interpola-
tion, a smoothing operation, loses fine-grained spatial in-
formation, leading to diminished segmentation accuracy.
Therefore, the Pixel Unshuffle operation is vital for main-
taining multi-scale contextual information.

Encoder hyperparameter ablations. Table 10 com-
pares the effect of different window sizes and SS2D param-
eter settings on SegMAN-T. Default setting (window size
[11,9,7,7]) yields best performance.

B. Detailed backbone comparison

Table 11 presents a detailed comparison of ImageNet-1k
classification accuracy. Additional representative back-
bones (PVTv2 [50], MaxViT [47], MambaTree [55]) are



Model Variant Params (M) GFLOPs mIoU

SegMAN-S 29.9 24.6 50.0

Scan Resolution
W
16 × W

16 (32×32) 30.5 25.2 49.5 (-0.5)

W
8 × W

8 (64×64) 29.7 26.6 49.2 (-0.8)

Downsample Method
Bilinear Interpolation 29.9 24.5 49.0 (-1.0)

Table 9. Additional ablation studies on the MMSCopE module in
SegMAN decoder.

Encoder config Param (M) GFLOP ImageNet-1k ADE20k

Window size for each stage [13,11,9,7] 5.1 (+0.0) 4.8 (+0.2) 76.4 (+0.2) 43.2 (-0.1)

Window size for each stage [9,7,7,7] 5.1 (+0.0) 4.4 (-0.2) 76.1 (-0.1) 43.1 (-0.2)

SSM expansion ratio 1 −→ 2 5.3 (+0.2) 5.2 (+0.6) 76.3 (+0.1) 43.0 (-0.3)

SSM state dimension N 1 −→ 16 5.3 (+0.2) 6.5 (+1.9) 76.5 (+0.3) 43.1 (-0.2)

Table 10. Effect of Encoder window size and SSM configurations.

included for comparison.

C. Generalization
Table 12 empirically demonstrates the modular compati-
bility of SegMAN components across two representative
frameworks: SegNeXt and CGRSeg. Replacing SegNeXt’s
encoder with our SegMAN-S Encoder reduces parameters
by 9% and GFLOPs by 15% while improving ADE20K
mIoU by +0.7%; substituting its decoder achieves +0.4%
mIoU at 14% lower computation. Similarly, integrat-
ing our encoder into CGRSeg yields +1.7% mIoU, while
our decoder enhances its performance by +0.8% mIoU.
These results quantify the efficacy of our encoder and de-
coder in balancing accuracy-efficiency trade-offs, validat-
ing that either component can independently upgrade exist-
ing pipelines. The bidirectional improvements underscore
SegMAN’s plug-and-play adaptability, where each module
achieves an optimal balance of performance gains (up to
+1.7% mIoU) and computational pragmatism across diverse
architectures.

D. Panoptic and instance segmentation
To demonstrate task-agnostic capabilities, we deploy our
SegMAN-S Encoder in Mask DINO [24] for panoptic and
instance segmentation. Replacing its default ResNet50
backbone with our ImageNet-1k pretrained encoder as well
as the MiT-B2 [56] backbone in SegFormer. We maintain
Mask DINO’s architecture while increasing batch size from
16 to 48 for training efficiency.

As shown in Table 13, SegMAN-S achieves 49.6 in-
stance AP (+3.3 over ResNet50, +2.0 over MiT-B2) and
56.8 panoptic PQ (+3.8/+2.1) while operating at 283
GFLOPs, which is 6% fewer than ResNet50 (286 GFLOPs)
and 10% fewer than MiT-B2 (315 GFLOPs). Despite com-

Models Params (M) GFLOPs Acc

MiT-B0 [56] 3.8 0.60 70.5
EFT-T [60] 3.7 0.60 72.3
MSCAN-T [18] 4.2 0.89 75.9
SegMAN-T Encoder 3.5 0.65 76.2

MiT-B2 [56] 24 4.0 81.6
EFT-B [60] 26 4.2 82.4
MSCAN-B [18] 27 4.4 83.0
Swin-T [29] 28 4.5 81.2
PVTv2-B2 [50] 25 4.0 79.8
ConvNeXt-T [30] 28 4.5 82.1
InternImage-T [51] 30 5.0 83.5
MaxViT-T [47] 31 5.6 83.7
ViM-S [67] 26 - 81.6
VMamba-T [28] 29 4.9 82.6
MambaTreev-T [55] 30 4.8 83.4
SparX-Mamba-T [32] 27 5.2 83.5
SegMAN-S Encoder 26 4.1 84.0

MiT-B3 [56] 45 6.9 83.1
MSCAN-L [18] 45 9.1 83.9
Swin-S [29] 50 8.7 83.2
PVTv2-B3 [50] 45 6.9 83.2
ConvNeXt-S [30] 50 8.7 83.1
InternImage-S [51] 50 8.0 84.2
MaxViT-S [47] 69 11.7 84.5
VMamba-S [28] 50 8.7 83.6
MambaTreeV-S [55] 51 8.5 84.2
SparX-Mamba-S [32] 47 9.3 84.2
SegMAN-B Encoder 45 9.9 85.1

MiT-B5 [56] 82 11.8 83.8
Swin-B [29] 88 15.4 83.5
PVTv2-B5 [50] 82 11.8 83.8
ConvNeXt-B [30] 89 15.4 83.8
InternImage-B [51] 97 16.7 84.9
MaxViT-B [47] 120 24.0 84.9
ViM-B [67] 98 - 83.2
VMamba-B [28] 89 15.9 84.5
MambaTreeV-B [55] 91 15.1 84.8
SparX-Mamba-B [32] 84 15.9 84.5
SegMAN-L Encoder 81 16.8 85.5

Table 11. Detailed comparison of classification accuracy and com-
putational complexity (FLOPs at 224×224 resolution) of encoder
architectures on ImageNet-1K.

Configuration Feature Encoder Decoder Param GFLOP ADE20k

SegNeXt MSCAN-B HAM 27.7 34.9 48.5
SegNeXt + our encoder SegMAN-S HAM 25.3 29.5 49.2 (+0.7)

SegNeXt + our decoder MSCAN-B Ours 30.6 29.9 48.9 (+0.4)

CGRSeg EfficientFormerV2-L CGRHead 35.7 16.5 47.3
CGRSeg + our encoder SegMAN-S CGRHead 44.2 24.5 49.0 (+1.7)

CGRSeg + our decoder EfficientFormerV2-L Ours 29.9 17.9 48.1 (+0.8)

Table 12. Encoder and Decoder generalization results.

parable parameter counts (48.3M vs. 48.5M MiT-B2), our
encoder delivers superior multi-task performance, validat-
ing its effectiveness beyond semantic segmentation.

E. Qualitative examples
We present qualitative examples of SegMAN’s segmen-
tation results on ADE20K Figures 4, Cityscapes 5, and



Encoder Param (M) GFLOP Instance AP Panoptic PQ

ResNet50 52 286 46.3 53.0
MiT-B2 48.5 315 47.6 54.7
SegMAN-S Encoder 48.3 283 49.6 (+3.3) 56.8 (+3.8)

Table 13. Panoptic and instance segmentation using Mask DINO.

COCO-Stuff-164K 6. For COCO-Stuff, comparisons are
made with VWFormer and EDAFormer only, since the
checkpoints for other segmentation models are not released.
These figures illustrate SegMAN’s capability to capture
both fine-grained local dependencies and long-range con-
textual information. Compared to other segmentation meth-
ods, SegMAN yields more precise boundaries and accu-
rately identifies intricate details within the scenes. These
qualitative results verify our quantitative findings, high-
lighting the benefits of SegMAN’s ability to capture fine-
grained details while maintaining global context, which is
unattainable by existing approaches.



Figure 4. Qualitative results on ADE20K. Zoom in for best view.

Figure 5. Qualitative results on Cityscapes. Zoom in for best view.



Figure 6. Qualitative results on COCO-Stuff-164K. We do not compare with SegFormer as its COCO-Stuff checkpoints are not released.
Zoom in for best view.
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