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A. Dataset Details

This section outlines the benchmark datasets used in our
experiments. Figure A shows sample images from CIFAR-
100, CUB, ImageNet-R, ImageNet-A, and VTAB. Since
the pre-trained model is trained on ImageNet-21K [37],
the standard ImageNet dataset is excluded as a benchmark
dataset to avoid data leakage.

CIFAR-100: CIFAR-100 [23] contains 100 object classes
and is widely used for image classification. CIFAR-100 is
a standard CIL benchmark due to its small image size and
diverse object categories. CIFAR-100 is especially suitable
for evaluating performance in simple CIL scenarios.

CUB: Caltech-UCSD Birds 200 (CUB) [47] contains 200
bird species and is a benchmark for fine-grained visual clas-
sification. Its main challenge lies in distinguishing visually
similar categories, such as birds with subtle differences in
shape, color, and texture. This requires models to perform
fine-grained feature extraction and to handle high intra-class
variability. This challenge makes it a valuable dataset for
evaluating CIL performance in fine-grained settings.

ImageNet-R: ImageNet-R [15], a variant of the ImageNet
dataset, consists of 200 classes with images drawn from di-
verse visual domains such as art, cartoons, and paintings.
This dataset is commonly used to evaluate a model’s ability
to generalize across domains and is particularly useful for
testing how models adapt to new domains in CIL.

ImageNet-A: ImageNet-A [14], a subset of ImageNet, con-
tains 200 classes with adversarial or out-of-distribution ex-
amples that models often misclassify. This dataset, de-
signed to challenge models trained on standard ImageNet,
includes images that are difficult to classify. ImageNet-A
is a benchmark for testing model robustness to adversarial
attacks and generalization to unseen inputs.

VTAB: Visual Task Adaptation Benchmark (VTAB) [56]
consists of various datasets aimed at evaluating model
adaptability across diverse tasks. This benchmark is primar-
ily used to evaluate transfer learning and domain adapta-
tion performance. Following the protocol in [59], this study
constructs a 50-class dataset using five VTAB subsets: Re-
sisc45 (classes 1-10), Describable Textures Dataset (DTD)
(classes 11-20), Oxford IIIT Pet dataset (classes 21-30), Eu-
roSAT (classes 31-40), and 102 Category Flower Dataset
(classes 41-50).

(a) CIFAR-100.

(b) CUB.

(c) ImageNet-R.

(d) ImageNet-A.

(e) VTAB.

Figure A. Example images from (a) CIFAR-100, (b) CUB, (c)
ImageNet-R, (d) ImageNet-A, and (e) VTAB.

B. Implementation Details

This section provides details of the implementation
setup. Table A lists the batch size, learning rate,
weight decay, and number of training epochs for each
dataset. Each experiment was run five times using seeds
1993, 1994, 1995, 1996, and 1997. The experiments were
conducted on a single NVIDIA RTX A5000 GPU using Py-
Torch for model training and inference.

Model Architecture: The backbone model used in the
experiments is ViT-B/162, with an embedding dimension
of 768, a patch size of 16, and 12 transformer blocks.
The multi-head attention employs 12 attention heads. The
adapter is configured with a bottleneck dimension of 64, a
dropout rate of 0.1, and an up-projection scale of 0.1.

Preprocessing: The preprocessing pipeline involves ran-

2https://github.com/huggingface/pytorch-image-models



Table A. Details of the training settings for each dataset, based on the configurations provided in [62].

dataset batch size learning rate weight decay epochs

CIFAR-100 48 2.5→ 10→2 5.0→ 10→4 20
CUB 32 8.0→ 10→3 5.0→ 10→4 20
ImageNet-R 16 5.0→ 10→2 5.0→ 10→3 20
ImageNet-A 32 5.0→ 10→2 5.0→ 10→3 20
VTAB 16 3.0→ 10→2 5.0→ 10→3 45

Figure B. Inference time curves per instance on ImageNet-R B0
Inc20 (left) and B0 Inc5 (right).

Figure C. Inference time curve per instance on ImageNet-R B0
Inc20.

dom cropping with scales ranging from 0.05 to 1.0 and as-
pect ratios between 3:4 and 4:3, followed by horizontal flip-
ping with a probability of 0.5. The images are resized to
224→ 224 and normalized to the range [0, 1].

C. Inference Time Comparison

This section presents additional inference time results com-
paring ACMap (ours) and baseline methods.

Figure B shows the inference time curves per instance
for both ImageNet-R B0 Inc20 (left) and B0 Inc5 (right),
demonstrating how inference time scales with the number
of tasks. EASE (green) [59] demonstrates a nearly linear in-
crease in inference time as the number of tasks T increases,
which is consistent with its O(T ) complexity. In contrast,
SimpleCIL [61], APER [61], and ACMap (ours) achieve an

Figure D. Cosine similarity curves of Sim(Pt(Āt→1),Pt(Āt)) on
ImageNet-R B0 Inc20 (left) and B0 Inc5 (right).

O(1) inference time, maintaining a constant inference cost,
regardless of the number of tasks. As mentioned in the main
paper, our method achieves a T -fold speedup in inference
compared to the state-of-the-art EASE, while maintaining
an accuracy comparable to that of EASE. Moreover, while
matching the inference time of SimpleCIL and APER, our
method achieves higher accuracy.

Figure C further compares the inference time per in-
stance between ACMap and other methods, including
iCaRL [36], DER [54], FOSTER [48], and MEMO [57].
While DER and MEMO exhibit a linear increase in infer-
ence time as the number of tasks grows, ACMap maintains a
constant inference time, similar to other parameter-efficient
methods. This result highlights the scalability advantage of
ACMap in CIL scenarios.

D. Early Stopping Threshold

The early stopping threshold L can be determined using
the cosine similarity between prototypes before and af-
ter adapter merging, defined as Sim(Pt(Āt→1),Pt(Āt)),
where Sim( · , · ) denotes cosine similarity. As t increases,
it approaches 1, indicating that the difference between Āt

and Āt→1 becomes negligible, as shown in Figure D. This
value guides the selection of an appropriate threshold.

E. Additional Experiments

This section presents supplementary experimental results
that expand upon the findings of the main paper.



Figure E. Top-1 accuracy curves during CIL for all experiments
conducted, comparing ACMap (ours) with SimpleCIL, APER, and
EASE. These graphs include the results from the main paper for
comparison and reference.

Figure F. Top-1 accuracy curves on balanced VTAB B0 Inc5 (left)
and B0 Inc10 (right).

E.1. Top-1 Accuracy Comparison

Figure E presents the top-1 accuracy curves for all exper-
iments conducted in this study, comparing ACMap (ours)
with SimpleCIL, APER, and EASE. The graphs include the
results from the main paper for comparison and reference.

The experimental results are consistent with those re-
ported in the main paper, showing that ACMap outperforms
or matches the accuracy of the other methods across all
datasets except for VTAB. While ACMap achieves accuracy
comparable to EASE, it is important to recall, as discussed
in Appendix C, that ACMap is T-times faster than EASE.
This emphasizes that ACMap delivers state-of-the-art accu-
racy while maintaining constant inference time, making it
well-suited for scalable CIL.

When the number of tasks in VTAB reaches four in Fig-
ure E (fourth row), ACMap exhibits a significant drop in ac-
curacy, resulting in lower performance than EASE. As dis-
cussed in Appendix G, this decline is likely caused by the
data imbalance, which may lead to overfitting. EASE, by
contrast, avoids this issue by maintaining separate adapters
for each task, albeit at the cost of increased inference time.

E.2. Comparison on balanced VTAB

The accuracy drop in VTAB appears starting from the fourth
task, as discussed in Appendix E.1. To examine whether
this drop results from data imbalance, we conduct experi-
ments under a balanced VTAB setting, where the number
of samples per task is equalized. The results, as shown in
Figure F, show that EASE and ACMap perform nearly iden-
tically, suggesting that the observed performance gap may
stem from data imbalance rather than an inherent limitation
of ACMap.

E.3. Comparison with Other Methods

Table B compares exemplar-based methods (iCaRL [36],
DER [54], FOSTER [48], MEMO [57]) and exemplar-free
methods (RanPAC [31], InfLoRA [27], and ACMap (ours))
using the average accuracy Ā and final accuracy AT as eval-
uation metrics. The results for the exemplar-based methods



Table B. Average accuracy Ā and final accuracy AT . iCaRL [36],
DER [54], FOSTER [48], and MEMO [57] are exemplar-based
methods, while RanPAC [31], InfLoRA [27], and ACMap (ours)
are exemplar-free methods.

Method Exemplars CIFAR B0 Inc10 IN-R B0 Inc20
Ā AT Ā AT

iCaRL [36] 20 / class 82.5 73.9 72.4 60.7
DER [54] 20 / class 86.0 77.9 80.5 74.3
FOSTER [48] 20 / class 89.9 84.9 81.3 74.5

MEMO [57] 20 / class 84.1 75.8 74.8 66.6

RanPAC [31] - 94.5 91.5 82.6 77.4

InfLoRA [27] - 91.7 86.5 80.8 75.7

Ours (L = ↑) - 92.9 89.3 79.5 73.5

Figure G. Cosine similarity between the mapped and true proto-
types on ImageNet-R B0 Inc20 (left) and B0 Inc5 (right). Blue
represents CM, and orange represents SDC. Semi-transparent lines
indicate cosine similarity between the source and true prototypes.

are taken from [59], and those for InfLoRA from [27], while
the results for RanPAC and ACMap represent averages over
five runs.

The exemplar-based methods use 20 exemplars per class.
Despite being exemplar-free, ACMap achieves significantly
better Ā and AT on CIFAR and only slightly lower per-
formance on IN-R. Among the exemplar-free methods,
ACMap achieves comparable accuracy to RanPAC and out-
performs InfLoRA on CIFAR. However, InfLoRA scales
poorly due to the growth of the model size for each task.
RanPAC requires M2 non-trainable parameters (M = 104)
for its random projection layer, which exceeds the total pa-
rameter count of ViT-B/16.

F. Evaluation of Prototype Alignment

Centroid prototype mapping (CM) improves upon existing
approaches such as semantic drift compensation (SDC) [55]
by achieving higher approximation accuracy. Unlike SDC,
which sums incremental shifts and thus accumulates errors,
CM applies a single centroid shift from task i to t. As shown
in Figure G, CM achieves higher cosine similarity between

Figure H. Cosine similarity curves of Sim(P̂1(Ā1),P1(Āt)), with
solid lines showing the similarity between mapped and true proto-
types, and semi-transparent lines between unmapped and true pro-
totypes, illustrating the alignment achieved by centroid prototype
mapping.



mapped and true prototypes, whereas SDC performance
worsens as the number of tasks increases.

Figure H presents additional experiments evaluating
CM’s effectiveness. These experiments evaluate prototype
alignment by measuring cosine similarities. The solid line
shows the cosine similarity between the mapped and true
prototypes, while the semi-transparent line shows that of the
unmapped and true ones. Curve colors indicate the classes
from the first task. Across all datasets, CM consistently im-
proves alignment, as indicated by the solid lines exhibit-
ing higher cosine similarity than the semi-transparent lines.
This result demonstrates that CM effectively aligns previ-
ous task prototypes with the true prototypes in the current
subspace. Interestingly, for CUB, a fine-grained classifica-
tion dataset, the semi-transparent lines already exhibit high
cosine similarity. This observation suggests that in fine-
grained classification tasks, adapters and adapter merging
may offer limited benefits. As shown in Table 1 of the main
paper, SimpleCIL, which does not use adapters, achieves
accuracy comparable to ACMap, APER, and EASE.

G. Landscape Analysis for Adapter Merging

Figure I presents the test-error landscapes of three succes-
sive adapters, ωt→1,ωt,ωt+1, obtained via linear interpo-
lation on the datasets not covered in the main paper. For
CIFAR-100 B0 Inc20 and VTAB B0 Inc10, only the result
for ω2,ω3,ω4 is presented because the task count is limited
to five. Therefore, ω6,ω7 are not available.

Across all datasets except VTAB, these results indicate
that ACMap promotes the formation of low-loss basins
(red regions), suggesting favorable conditions for success-
ful adapter merging. For CUB, instead of forming low-loss
basins, the results show relatively flat landscapes. This re-
sult suggests that adapter merging may be unnecessary for
achieving CIL in CUB, as discussed in Appendix F.

Moreover, as shown in Figure I (g), (h), low-loss basins
are not observed for VTAB. As discussed in Section 5.2, the
dataset size for the fourth task in VTAB is larger than that
of the others, which may lead to overfitting on the fourth
task. The low test-error rate (red) observed around ω4 in
Figure I (h) supports this hypothesis. This hypothesis is
also supported by the VTAB B0 Inc10 result in Figure 5 of
the main paper, where ACMap demonstrates a significant
decline in accuracy starting from the fourth task.



(a) CIFAR-100 B0 Inc5. (b) CIFAR-100 B0 Inc20.

(c) ImageNet-R B0 Inc5. (d) ImageNet-R B0 Inc20.

(e) ImageNet-A B0 Inc5. (f) ImageNet-A B0 Inc20.

(g) VTAB B0 Inc5. (h) VTAB B0 Inc10.

(i) CUB B0 Inc10.

Figure I. Additional results for visualization of the test error on CIFAR-100, CUB, ImageNet-R, ImageNet-A, and VTAB using linearly
interpolated adapter weights ω = uωt→1+vωt+(1→u→v)ωt+1, (0 ↑ u, v ↑ 1) across three consecutive adapter weights ωt→1,ωt,ωt+1.
For CIFAR-100 B0 Inc20 and VTAB B0 Inc10, only the result for ω2,ω3,ω4 is presented because the task count is limited to five, meaning
ω6,ω7 are not available.
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