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A. Data acquisition
A.1. Site descriptions and period of acquisition

The Swiss National Park is located in Eastern Switzerland
and has a substantially higher density of ungulates com-
pared to neighboring regions. Additionally, the park is a
strictly protected nature reserve, and thus human activities
are restricted to be minimal [6]. This makes the region par-
ticularly interesting to acquire data on the naturalistic be-
haviors of ungulates from camera trap videos over a rela-
tively short period of time.

We identified three sites for habitat monitoring. The
three sites used for the study are located between 1840 m
and 1890 m of altitude, at which elevation mostly red deers
and roe deers are found, chamois foraging generally higher
at this period of the year. For privacy reasons, we do not
disclose the exact location.

Site 1 is a clearing within an alpine forest composed of
larch, cembra pine, mountain pine and spruce facing South-
West. Site 2 is located at the intersection of multiple game
paths, in a similar forest type facing North. Site 3 is located
by a water stream where the terrain creates two small water

pounds, and is facing towards South. The three sites were
chosen by purpose to acquire a behavioral dataset as diverse
as possible since observing different behavioral expressions
is of a high chance in these sites. Cameras acquired video
and audio data for 6 weeks between August and October
2023. This period corresponds to the rutting season of red
deer, and thus many events represent rutting-related behav-
iors.

A.2. Camera settings

Camera traps (Browning’s Spec Ops Elite HP5) acquired
videos of fixed duration (either for 1 or 2 minutes at day-
time, and 20 seconds when with the IR flash). Cameras
were set to fast trigger mode with a delay of 1 second be-
tween subsequent videos, with long-range motion detection
enabled. Cameras were fixed either on wooden poles or
on trees, around 60 cm above ground. Cameras were posi-
tioned on the sites with varying levels of field-of-view over-
lap, while Site 3 had the most con-focal setup, and site 1
had the least.

We report video acquisition statistics per camera and per
site ( Fig. S1a-b). When cameras began to run out of bat-
tery, the recordings at night were automatically shortened
by the hardware, leading to many nighttime clips with short
durations (below 20 seconds). Among these clips, We kept
only the ones containing at least 30 frames (1 second).

B. Details on data processing and annotation

B.1. From events to tracklets

We used MegaDetector [1, 7] v5a at a sampling period of
five frames to detect recordings with animals among the raw
videos (N = 3794). Videos which did not have at least two
animal detections above a permissive animal detection con-
fidence threshold of 0.3, were considered as false positives.
The videos with detections (N = 1961) were then trimmed
to the segment between the first and last MegaDetector de-
tection. We ran MegaDetector v5a again on every frame of
the trimmed videos to obtain dense animal detection predic-
tions.

To obtain animal tracks we adapted the matching al-
gorithm from ByteTrack [12]. Indeed, ByteTrack perfor-
mance depends on the performance of the object detector
and the frame rate (the more frequent the better). However,
as MegaDetector was not fine-tuned on our data, we observe
a high rate of missing detections either because of long-term
occlusions (e.g. an animal passing behind a tree), low frame



quality (e.g. at night), and relatively low frame rate (for
tracking, i.e., 30 FPS). To improve tracking performance,
we used the generalized intersection-over-union matching
cost (GIoU), instead of the (IoU) originally proposed in
ByteTrack to allow the matching of bounding boxes even
when they do not overlap. We added an area difference
matching cost to avoid matching animals with small false
detections from MegaDetector (e.g. rain drops). We also
gave maximum certainty to the measurements (MegaDe-
tector bounding boxes) during the Kalman Filter integra-
tion process to avoid long-term interpolations and bound-
ing boxes that would lag behind the animal after long oc-
clusions. Specifically, we used a detection threshold of 0.2,
a track activation threshold of 0.5, a lost track buffer of 300
frames, and a minimum matching threshold for high con-
fidence pairs of 0.75. The cost C between two bounding
boxes Bi and Bj is defined as follows:

C(Bi, Bj) = 1− (GIoU(Bi, Bj)− 2 ∗A(Bi, Bj)) + 3)/4

A(Bi, Bj) =
|Area(B1)−Area(B2)|
area(B1) +Area(B2)

(1)

After dense prediction and tracking, resulting tracks
were all visually examined and corrected in CVAT [5] when
necessary. Specifically, tracks were corrected for identity
switches and duplicated or lost tracks. We also removed
any false positive tracks (e.g. a rock), yielding a total 2139
animal tracks.

A video tracklet of dimension 380 × 380 was created
for each individual track by cropping the original video and
padding it with the background to preserve the 1:1 aspect
ratio. In crowded scenes, it is common that multiple ani-
mals expressing different behaviors are visible on the same
tracklet, which may ultimately impact model performance.

The curated tracks include five species: red deer (Cervus
elaphus), roe deer (Capreolus capreolus), fox (Vulpes
vulpes), wolf (Canis lupus) and mountain hare (Lepus
timidus). Other species were not included, either because
too few events were captured or because individuals were
too small.

B.2. Behavior annotations

We report the list of behaviors used in the study, along with
their definitions and their associated actions, which were
automatically gathered from the annotations (Tab. S1). We
used a mixed approach to select relevant behaviors. First
we sourced behaviors from ethogram studies of related deer
species. Then, we adjusted the list based on what was inter-
pretable from video-data, and the behavior observed in our
data. The ruminating behavior was discarded since it was
difficult to detect, especially at nighttime, and was hence
merged with standing head up. The exploring behavior was

also difficult to differentiate from others, and thus merged
with foraging. Some social behaviors such as parenting or
other non-agonistic behaviors between individuals were not
included as they are relatively difficult to define in space
and time in a consistent manner.

B.3. Reference scene segmentation maps

Before dismounting cameras, a reference picture of the
scene was collected for each of them by manually triggering
the camera trap (Fig. S2).

The reference scenes (Fig. S2) were annotated in
CVAT [5] for 10 classes: bush, pole, rock, grass, soil/path,
log, tree trunk, foliage, water, and background (Fig. S3).

B.4. Quantification of cameras temporal drift

We quantified the temporal drift between pairs of cameras
for each site, as shown in Fig. S4. This was achieved by
manually selecting frames that depicted the same animal
pose from at least two camera views, and reporting the date
and time of the respective frames. Site 1 shows the biggest
drift, while cameras in Site 2 seems less prone to temporal
drift. Site 3 contains limited data as Camera 1 battery ran
off early, which limits the quantification of the drift.
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Figure S1. Dataset statistics on the acquired data per camera, and on the data used in Sec. 3.3 and 3.4. (a) summarizes the number
of recording days before curation. Note that the batteries for two of the cameras at site S3 ran out earlier. Video durations per hour of the
day (b) were computed on the subset of raw videos belonging to either benchmark B1 or B2.
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Figure S2. Reference picture of the scene for each camera.
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Figure S3. Reference scene segmentation maps.

Figure S4. Temporal drift between pairs of cameras over time.



Activity Associated actions Definition

Camera
Reaction

standing head up, looking at the camera, run-
ning, sniffing, jumping, walking

Any type of behavior that involves reacting to a cam-
era.

Chasing running, walking Whenever a predator chases a prey.

Courtship standing head up, running, vocalizing,
bathing, scratching antlers, laying, walking

Behaviors related to breeding, uniquely for red deer
at this period of the year. It can involve a single stag
(e.g. vocalizing) or multiple individuals (e.g. running
after a hind).

Escaping running, vocalizing, walking, jumping Escaping from a predator, or running away from an-
other individual from the same species.

Foraging standing head up, laying, unknown, running,
drinking, sniffing, vocalizing, standing head
down, bathing, defecating, grazing, walking,
urinating, scratching body

Large family of behaviors related to energy acquisi-
tion, from environment sensing (e.g. sniffing) to ac-
tual consumption (e.g. grazing).

Grooming standing head up, shaking fur, bathing, stand-
ing head down, scratching antlers, defecating,
scratching hoof, laying, walking, urinating,
scratching body

Behaviors involving a single individual that cleans its
body and fur, either by scratching in multiple ways or
while bathing.

Marking standing head up, defecating, bathing, scratch-
ing antlers, standing head down, jumping,
scratching hoof, walking, urinating

Behaviors related to a single stag that marks specific
features from the environment.

Playing standing head up, running, sniffing, standing
head down, jumping, scratching hoof, walking

Behaviors involving one or multiple individuals, often
young ones, and characterized by running or jumping
in the absence of negative stimuli.

Resting standing head up, bathing, scratching antlers,
standing head down, laying

Whenever an animal stays in place for a long time and
does not appear to be in vigilance or foraging.

Unknown standing head up, unknown, running, sniff-
ing, standing head down, jumping, scratching
hoof, walking

Sometimes the behavior cannot be deduced from the
current context, for example, because of occlusion or
some decisive parts of the body being out-of-frame.

Vigilance standing head up, looking at the camera, run-
ning, sniffing, standing head down, defecat-
ing, grazing, walking

Any behavior where an animal or a group of animals
are actively sensing the environment either to detect
potential predators or other sources of threat, or in re-
action to another individual’s vocalization.

Table S1. Definition of the activities present in the dataset and their associated actions.



C. Benchmark 1: Multimodal Species and Be-
havior recognition

C.1. Multimodal VideoMAE Implementation de-
tails

We adopted a condensed version of VideoMAE [10] from
InternVideo [11], for which we used the pre-trained weights
on Kinetics 700 dataset [3]. We replaced the original clas-
sification head with three classification heads to predict
species (Spe), activities (ActY) and actions (ActN) simul-
taneously, while using the loss weights of 1, 2.5 and 2.
Meanwhile, we implemented a balanced sampling strategy
to deal with the unbalanced number of samples across dif-
ferent classes. For all the models with different modality
inputs, we trained them with 150 epochs with the learning
rate decreasing from 10−5 to 10−7.

An overview of the model trained for B1 was created
( Fig. S5). We made several modifications so that the
VideoMAE [10] model can take different modalities as in-
put (video, audio and segmentation masks). First, the video
modality is naturally trivial – we sampled 16 frames sim-
ilar to the original VideoMAE [10] and then transformed
them to 16 × 14 × 14 patches. It needs to be noted that
we only sampled frames within 5 seconds of randomly se-
lected windows since some behaviors span long times; this
captured evidence more compactly. For the audio inputs,
we first found the audio clip simultaneous to the video clip
and then transformed the original audio signal to a spec-
trogram, similar to AudioMAE [8]. We adopted a smaller
audio sample length (10 in comparison to the original 25)
so that the spectrogram can be generated with fewer au-
dio samples. We applied masking across temporal and fre-
quency domains during training for data augmentation. The
spectrogram was interpolated to 256 tokens to obtain the
same input length across different samples. Finally, for the
segmentation inputs, we sampled 16 frames simultaneous to
the sampled video frames. Segmentation inputs were repre-
sented as one-hot encoded matrices for every frame so that
the model did not rely on spurious linear dependencies be-
tween the class indices.

We optimized model parameters by back-propagating
the three task-specific cross-entropy (CE) losses. After the
quantitative comparison between binary cross-entropy and
CE loss for ActN recognition, CE ultimately increased op-
timization speed, most likely since there are at most two ac-
tions and often only one. For both B1 and B2 we used bal-
ancing sampling. To account for multiple labels, we com-
puted a sampling weight proportional to the sum of their
inverse class frequencies.

C.2. Baseline performances.

To contextualize the difficulty of B1, we ran additional ex-
periments on the ActY recognition task for videos (Tab. S2).

ViT-B16

Spe head

(CE loss)

ActY head

(CE loss)

ActN head

(CE loss)

Tokenization + PE

Tokenization + PE

Tokenization + PE

1538 tokens

1538 tokens

256 tokens

Concatenation of the different modalities

Figure S5. Multimodal Video Transformer implementation for
B1. Note that the transformer backbone is similar to both B1 and
B2. In B2, the backbone is followed by four classification heads
instead of the three depicted here, one for each of the classification
tasks.

Note that the model evaluated on KABR [9] and Mammal-
Net [4] show behavior recognition scores of 0.66 (mAP on
X3D-L) and 0.378 (top-1 balanced acc. on mViTv2), re-
spectively, indicating that the difficulty is in the range of
related datasets for this single unimodal task.

Baseline mAP top-1 balanced accuracy

SlowFast-8x8† 0.203 0.197
X3D-M† 0.251 0.256
mViT-v2† 0.259 0.156
VideoMAE† (ours) 0.410 0.274
VideoMAE (ours) 0.414 0.403

Table S2. Additional baseline performances on the ActY recogni-
tion task from videos. †: uniform sampling

C.3. Models performance per class

We report model performances (F1-scores and average pre-
cisions) per class (Tab. S3, Tab. S4, Tab. S5 and S6). The
advantage of reporting the mAP (or AP when considering
single classes) is that the metric better represents the area
under the curve as it computes the precision over multiple
thresholds, and it can be equally applied to multi-class and
multi-label problems. To compute the F1-score, we used
a threshold of 0.5 on the softmax and sigmoid outputs for
multi-class and multi-label tasks, respectively.



Activity Support F1-score

Trained on ActY. ActY.+ActN. ActY.+Spe. All All All All All All All
Modality V V V V A S A+S V+S V+A V+A+S

Cam. reaction 7 0.167 0.182 0.000 0.000 0.080 0.000 0.000 0.111 0.000 0.190
Chasing 3 1.000 1.000 0.857 1.000 0.000 0.462 0.250 1.000 0.857 0.750
Courtship 56 0.565 0.532 0.429 0.442 0.589 0.143 0.512 0.330 0.574 0.617
Escaping 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Foraging 688 0.782 0.795 0.760 0.801 0.677 0.651 0.709 0.783 0.822 0.789
Grooming 24 0.350 0.359 0.264 0.293 0.014 0.108 0.150 0.230 0.356 0.310
Marking 76 0.667 0.583 0.504 0.569 0.509 0.230 0.382 0.516 0.775 0.787
Playing 21 0.000 0.000 0.000 0.000 0.067 0.049 0.000 0.000 0.000 0.000
Resting 48 0.250 0.185 0.250 0.189 0.000 0.039 0.000 0.207 0.154 0.185
Unknown 92 0.426 0.398 0.394 0.378 0.030 0.275 0.229 0.441 0.508 0.393
Vigilance 228 0.625 0.664 0.619 0.637 0.025 0.183 0.338 0.589 0.640 0.621

Macro 1244 0.439 0.427 0.371 0.392 0.181 0.194 0.234 0.382 0.426 0.422

Table S3. F1-scores per activity for the behavior recognition benchmark (B1). V: video clips; A: audio spectrograms; S: segmentation
map clips; ActY.: Activities; ActN.: Actions; Spe.: Species.

Activity Support AP

Trained on ActY. ActY.+ActN. ActY.+Spe. All All All All All All All
Modality V V V V A S A+S V+S V+A V+A+S

Cam. reaction 7 0.089 0.114 0.169 0.119 0.018 0.042 0.073 0.104 0.114 0.194
Chasing 3 1.000 1.000 1.000 1.000 0.017 0.362 0.423 1.000 1.000 0.917
Courtship 56 0.540 0.552 0.425 0.419 0.638 0.113 0.569 0.369 0.633 0.651
Escaping 1 0.059 0.034 0.333 0.023 0.006 0.004 0.015 0.077 0.017 0.038
Foraging 688 0.850 0.870 0.857 0.867 0.613 0.703 0.735 0.840 0.873 0.870
Grooming 24 0.280 0.291 0.216 0.308 0.020 0.101 0.116 0.152 0.307 0.222
Marking 76 0.739 0.619 0.572 0.654 0.534 0.155 0.321 0.556 0.794 0.788
Playing 21 0.017 0.022 0.026 0.024 0.042 0.071 0.050 0.055 0.036 0.030
Resting 48 0.275 0.289 0.286 0.267 0.070 0.051 0.068 0.205 0.280 0.218
Unknown 92 0.342 0.367 0.344 0.357 0.104 0.227 0.208 0.421 0.456 0.395
Vigilance 228 0.651 0.706 0.646 0.672 0.218 0.241 0.310 0.608 0.713 0.651

Macro 1244 0.440 0.442 0.443 0.428 0.207 0.188 0.262 0.399 0.475 0.452

Table S4. Average precisions (AP) per activity for the behavior recognition benchmark (B1). V: video clips; A: audio spectrograms;
S: segmentation map clips; ActY.: Activities; ActN.: Actions; Spe.: Species.



Action Support F1-score

Trained on ActN. ActY.+ActN. ActN.+Spe. All All All All All All All
Modality V V V V A S A+S V+S V+A V+A+S

Bathing 2 0.400 0.286 0.400 0.400 0.013 0.028 0.071 0.133 0.286 0.400
Defecating 6 0.000 0.000 0.000 0.000 0.026 0.022 0.040 0.000 0.000 0.013
Drinking 6 0.500 0.444 0.400 0.444 0.033 0.062 0.156 0.267 0.345 0.316
Grazing 184 0.684 0.613 0.650 0.616 0.425 0.510 0.508 0.564 0.592 0.564
Jumping 7 0.000 0.000 0.222 0.000 0.044 0.108 0.000 0.000 0.143 0.000
Laying 53 0.312 0.435 0.394 0.317 0.102 0.062 0.051 0.314 0.344 0.303
Look. at cam. 2 0.000 0.000 0.000 0.333 0.000 0.041 0.118 0.074 0.000 0.000
Running 36 0.466 0.416 0.376 0.471 0.162 0.305 0.325 0.313 0.455 0.330
Scratch. antlers 55 0.638 0.645 0.626 0.680 0.280 0.188 0.258 0.508 0.745 0.686
Scratch. body 10 0.250 0.187 0.211 0.000 0.000 0.015 0.030 0.083 0.091 0.139
Scratch. hoof 24 0.294 0.321 0.373 0.280 0.236 0.127 0.286 0.200 0.429 0.430
Shaking fur 11 0.545 0.571 0.400 0.538 0.020 0.101 0.161 0.359 0.273 0.350
Sniffing 38 0.479 0.143 0.232 0.193 0.064 0.081 0.116 0.120 0.218 0.118
Stand. head down 180 0.464 0.375 0.467 0.400 0.279 0.300 0.298 0.385 0.400 0.381
Stand. head up 265 0.689 0.712 0.648 0.677 0.359 0.390 0.397 0.585 0.702 0.629
Unknown 75 0.578 0.551 0.507 0.497 0.147 0.283 0.217 0.357 0.502 0.401
Urinating 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Vocalizing 37 0.323 0.500 0.328 0.505 0.604 0.188 0.481 0.306 0.598 0.511
Walking 300 0.786 0.746 0.780 0.714 0.400 0.458 0.491 0.548 0.730 0.658

Macro 1292* 0.390 0.366 0.369 0.372 0.168 0.172 0.211 0.269 0.361 0.328

Table S5. F1-scores per action for the behavior recognition benchmark (B1). *Note that since there can be up to two actions per
sample, this increases the total number of samples since each label is considered independently. V: video clips; A: audio spectrograms; S:
segmentation map clips; ActY.: Activities; ActN.: Actions; Spe.: Species.

Action Support AP

Trained on ActY. ActY.+ActN. ActY.+Spe. All All All All All All All
Modality V V V V A S A+S V+S V+A V+A+S

Bathing 2 0.507 0.509 0.528 0.550 0.011 0.254 0.508 0.503 0.520 0.507
Defecating 6 0.008 0.012 0.008 0.006 0.014 0.007 0.061 0.005 0.005 0.007
Drinking 6 0.633 0.555 0.714 0.513 0.051 0.029 0.166 0.800 0.621 0.502
Grazing 184 0.857 0.746 0.848 0.847 0.388 0.493 0.544 0.792 0.834 0.812
Jumping 7 0.023 0.023 0.207 0.024 0.032 0.042 0.043 0.014 0.105 0.024
Laying 53 0.315 0.368 0.381 0.369 0.054 0.085 0.093 0.244 0.382 0.321
Look. at cam. 2 0.008 0.013 0.012 0.238 0.002 0.126 0.035 0.026 0.047 0.030
Running 36 0.669 0.684 0.586 0.634 0.172 0.315 0.457 0.489 0.646 0.521
Scratch. antlers 55 0.674 0.672 0.654 0.716 0.184 0.160 0.192 0.558 0.742 0.760
Scratch. body 10 0.164 0.091 0.152 0.067 0.009 0.014 0.017 0.044 0.054 0.097
Scratch. hoof 24 0.294 0.212 0.198 0.292 0.289 0.069 0.299 0.166 0.470 0.519
Shaking fur 11 0.559 0.400 0.323 0.516 0.020 0.134 0.126 0.248 0.345 0.272
Sniffing 38 0.517 0.320 0.399 0.456 0.037 0.101 0.122 0.246 0.407 0.167
Stand. head down 180 0.575 0.477 0.578 0.535 0.234 0.197 0.181 0.313 0.521 0.346
Stand. head up 265 0.778 0.853 0.806 0.851 0.035 0.362 0.462 0.772 0.830 0.806
Unknown 75 0.610 0.607 0.619 0.572 0.093 0.280 0.278 0.507 0.576 0.519
Urinating 1 0.007 0.002 0.007 0.003 0.002 0.005 0.002 0.004 0.001 0.003
Vocalizing 37 0.415 0.688 0.500 0.606 0.835 0.100 0.724 0.561 0.787 0.836
Walking 300 0.890 0.881 0.876 0.901 0.284 0.477 0.569 0.841 0.895 0.878

Macro 1292* 0.447 0.427 0.442 0.458 0.161 0.171 0.257 0.375 0.463 0.417

Table S6. Average precisions (AP) per action for the behavior recognition benchmark (B1). *Note that since there can be up to
two actions per sample, this increases the total number of samples since each label is considered independently. V: video clips; A: audio
spectrograms; S: segmentation map clips; ActY.: Activities; ActN.: Actions; Spe.: Species.



D. Benchmark 2: Multi-view Long-term Event
Understanding

Here we detail our simple baseline method for B2. In par-
ticular, we illustrate how we performed token merging, how
we trained the model and additional results.

D.1. Selecting false positive events

The raw video dataset contains 43 h of raw data, where the
majority comes from false positive samples in Camera 1 of
site 3 (Fig. S1a-b). While having these false positive events
is important for B2 as they represent true data and are com-
mon in camera trap surveys, a disproportionate number of
them leads to unnecessarily high computational costs. To
construct the dataset for B2, we therefore discarded any
event that was longer than 15 minutes (cumulative recording
time among all points of view) which eliminated 10 false
positive events and three true positive ones, and effectively
reducing the dataset size to 14 hours with 3 hours of false
positive events.

D.2. Offline Token Merging strategy

We describe our offline token merging strategy over time
in Algorithm 1, and illustrate the process ( Fig. S6). Af-
ter spatial merging with ToME [2], we select the tokens of
every second frame and merge them with any other tokens
from all the other frames, following the same soft-bipartite
graph matching algorithm used in the original method [2].
The process is repeated iteratively the final number of video
tokens is equal or inferior to the original number of tokens
in a single frame. Note that the final number of video to-
kens increases with the video duration since we perform the
algorithm in chunks. The embedding dimension is 768, and
the chunk size is 615 frames.

Algorithm 1 Offline Token Merging
Require: Video frames F ,

Pretrained Vision-MAE with token merging [2] ToME,
ToME reduction factor r,
Chunk size c

Ensure: Condensed video tokens Tfinal

1: for each chunk Ci ⊂ F of size c do ▷ Process in chunks
2: T ← ToME(fj , r), ∀fj ∈ Ci ▷ Spatial Merging
3: Nf ← |Tj | for any j ▷ Tokens in each frame
4: Nv ← Nf × |Ci| ▷ Tokens in chunk
5: while Nv > Nf do ▷ Temporal Merging
6: Tselected ← {Tj | j is even}
7: Tother ← {Tj | j is odd}
8: T ← Merge(Tselected, Tother)
9: Ci ← {fj | j is even, ∀f ∈ Ci}

10: Nv ← Nf × |Ci|
11: end while
12: end for
13: Tfinal ←

⋃
i TCi ▷ Concatenate tokens across chunks

D.3. Transformer encoder implementation details

We used the same code base as for B1 for the long-term
event understanding task. Instead of giving video frames to
a video tokenizer as input to a transformer encoder, we con-
catenated all video tokens corresponding to a given event,
while adding spatial (CamID: camera id) and positional
encodings (∆Tevent: elapsed time w.r.t event start), and in-
put them to the transformer encoder. We also added the
source frame and patches from the offline token merging
process to each individual video token as positional embed-
ding (Source). We used the same encoder as a ViT-base
model, without using pretraining weights (i.e. trained from
scratch).

Models were trained for 300 epochs with a learning rate
decreasing from 10−5 to 10−7 using the Adam-weighted
optimizer. We applied the same sampling balancing strat-
egy as in B1. We trained the activity recognition task with
binary cross-entropy loss, and the other three tasks with cat-
egorical cross-entropy loss. We did not apply loss weighting
to any of the four classification heads.

D.4. Camera-views ablation

We ablated camera-views: C1, C2 (Table S7). Models are
tested on the same multi-view subset of events EC1∪EC2,
which are seen by either one or both views. Experiments
demonstrate the advantage of using multiple views for com-
plex tasks such as ActY recognition and number of individ-
uals recognition.

Train events ActY mAP Ind. mAP Avg. mAP

EC1 0.379 0.474 0.407
EC2 0.464 0.445 0.446
EC1∪EC2 ⧹ EC1∩EC2 0.480 0.445 0.456
EC1∪EC2 0.522 0.510 0.501

Table S7. Camera-view ablations for B2. Models are trained
with all positional embeddings and r = 14 on the joint recognition
task. ActY: Activity; Ind. Number of individuals; Avg. Overall
per-class

D.5. Models performance per class

We report F1-scores and average precisions per class com-
puted similarly as for B1 (Tab. S9 and S8). We show the
results when using a ToME [2] reduction factor of r = 14
and r = 11, and all types of positional encodings (CamID,
∆Tevent, Source).
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Class Support r = 14 r = 11

Activities AP

Cam. reaction 5 0.300 0.080
Chasing 2 0.022 0.175
Courtship 5 0.385 0.396
Escaping 2 0.021 0.038
Foraging 49 0.863 0.890
Grooming 5 0.648 0.499
Marking 5 0.557 0.465
None 28 0.959 0.924
Playing 1 0.042 0.020
Resting 3 0.459 0.411
Unknown 30 0.786 0.755
Vigilance 35 0.759 0.751

Macro 170* 0.483 0.450

Species AP

Fox 1 0.030 0.500
Hare 1 0.020 0.019
None 28 0.919 0.978
Red deer 53 0.938 0.973
Roe deer 3 0.118 0.148
Wolf 1 0.033 0.018

Macro 87* 0.343 0.439

Meteorological Conditions AP

Clear 30 0.803 0.798
Overcast 15 0.466 0.533
Rainy 9 0.416 0.348
Sunny 32 0.927 0.858

Macro 86 0.653 0.634

Counting Individuals AP

0 28 0.917 0.985
1 42 0.684 0.798
2 10 0.170 0.348
3+ 6 0.014 0.239

Macro 86 0.478 0.593

Table S8. Average precisions (AP) per class for the long-term
event understanding benchmark (B2). *Note that since there
can be multiple species and activities per sample, this increases
the total support since each label is considered independently.

Class r = 14 r = 11

Activities F1-scores

Cam. reaction 5 0.222 0.000
Chasing 2 0.000 0.000
Courtship 5 0.333 0.333
Escaping 2 0.000 0.000
Foraging 49 0.889 0.871
Grooming 5 0.400 0.250
Marking 5 0.286 0.333
None 28 0.926 0.964
Playing 1 0.000 0.000
Resting 3 0.500 0.000
Unknown 30 0.812 0.704
Vigilance 35 0.658 0.667

Macro 170* 0.419 0.344

Species F1-scores

Fox 1 0.000 0.000
Hare 1 0.000 0.000
None 28 0.926 0.926
Red deer 53 0.909 0.907
Roe deer 3 0.222 0.182
Wolf 1 0.000 0.000

Macro 87* 0.343 0.336

Meteorological Conditions F1-scores

Clear 30 0.778 0.778
Overcast 15 0.545 0.300
Rainy 9 0.333 0.333
Sunny 32 0.939 0.941

Macro 86 0.649 0.588

Counting Individuals F1-scores

0 28 0.926 0.964
1 42 0.690 0.833
2 10 0.174 0.000
3+ 6 0.000 0.000

Macro 86 0.448 0.449

Table S9. F1-scores per class for the long-term event under-
standing benchmark (B2). *Note that since there can be multiple
species and activities per sample, this increases the total support
since each label is considered independently.
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