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7. Additional Details on our Methodology

7.1. Motivation for change-specific opacity factor

As discussed in Sec. 3.4, our Change-3DGS can render both
RGB images of the inference scene and change maps in par-
allel. To achieve this, we incorporate a separate opacity fac-
tor (ω̃) – we explain the necessity of this design decision
below.

During optimization, the standard 3DGS process [13]
uses the opacity factor (ω) to identify when Gaussians do
not contribute to the modeling and should be culled. In
our change detection scenario, there can be situations where
the Gaussians required to model RGB appearance versus
change maps can differ. For example, consider scenarios
where an object present in the reference scene is missing
or has been moved in the inference scene. In the standard
3DGS process, Gaussians representing such missing/moved
structures lower their opacity (ω) over the training as they
are not visible in the set of inference images Iinf, even-
tually becoming transparent and being pruned. However,
for change modeling, these Gaussians can be critical struc-
tures for embedding change in a change mask, carrying
high change magnitudes (c̃). For this reason, we incorpo-
rate a separate change opacity factor into each Gaussian
and consider both opacity factors (ω and ω̃) when determin-
ing whether a Gaussian should be removed, applying the
minimum opacity threshold εω [13]. Gaussians are only re-
moved when both ω and ω̃ fall below the culling threshold.

7.2. Motivation for initializing Change-3DGS with
reference scene 3DGS

We initialize our Change-3DGS with the existing 3DGS for
the reference scene for two reasons: (1) many underlying
structural elements of the scene are likely to remain con-
sistent between the two scenes, and leveraging the already
built reference 3DGS can allow us to update for an infer-
ence 3DGS with less data than learning from scratch; (2) as
described in Sec. 7.1, the reference scene can contain Gaus-
sians representing structures that disappear in the inference
scene and are important for modeling change – these can
be challenging to learn if learning the inference 3DGS from
scratch.

7.3. Visualization of Data Augmentation for Learn-
ing Change Channels

We visualize the data augmentation process described in
Sec. 3.6 in Fig. 5.
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Figure 5. An overview of our data augmentation method. We con-
catenate the candidate masks (MF,S)inf generated following Fig. 2
with candidate masks (MF,S)ref obtained by considering the in-
ference scene’s representation viewed from the reference scene’s
poses.

7.4. Additional Implementation Details
We build the reference scene by training on Iref and Pref
for 7000 iterations. Once initiated with a reference scene,
we only train for 3000 iterations to update the representa-
tion to inference scene with Iinf and Pinf while simultane-
ously optimizing the change channel guided by MF,P (see
Sec. 3.4). Once the inference scene representation is built,
we fine-tune the change channel for another 3000 iterations
using the augmented candidate change mask following the
process described in Sec. 3.6. All the experiments were
conducted on a single NVIDIA RTX 4090 GPU.

8. Additional Details on Datasets
8.1. Additional Details on MAD-Real
The MAD-Real dataset [49] has publicly released 10 scenes
each containing a LEGO toy object. We illustrate each
scene at the end of this Supp. Material: Bear, Bird, Ele-
phant, Parrot, Pig, Puppy, Scorpion, Turtle, Unicorn, and
Whale. During our experiments, we consider the train-set
as the image set for the reference scene and the test-set as
the image set for the inference scene.

8.2. Additional Details on PASLCD
We provide a breakdown of the change types and prevalence
represented in PASLCD in Fig. 6. A wide range of change
prevalence is tested, ranging between 0.17% and 20.12%,
with an average of 3.51%.

Each figure contains a set of images from the inference
scene, a set of images from the reference scene collected
under similar lighting conditions to the inference images
(Instance 1), and a set of images taken from the reference



Table 7. Relative performance loss (!) of each method when de-
tecting changes in scenes with different lighting conditions.

Method !mIoU (%) → !F1 (%) →

CYWS-2D [33] 16.1 10.0
Feature Diff. 17.2 12.6
Ours 7.2 4.5

scene collected under different lighting conditions (Instance
2). The inference set is annotated with respect to Instance 1
and Instance 2.

Images were captured using an iPhone with a 16:9 as-
pect ratio. For each instance, a human inspector indepen-
dently moved across the scene following a random trajec-
tory, while capturing the scene with no constraints on the
camera pose. Images were taken at random heights and ran-
dom orientations.

We also provide additional visualizations and a descrip-
tion of the changes for our PASLCD dataset for each scene
at the end of this Supp. Material: Cantina (see Fig. 8),
Lounge (see Fig. 9), Printing area (see Fig. 10), Lunch
Room (see Fig. 11), Meeting Room (see Fig. 12), Garden
(see Fig. 13), Pots (see Fig. 14), Zen (see Fig. 15), Play-
ground (see Fig. 16) and Porch (see Fig. 17).

9. Additional Experimental Results
9.1. Instance-level Results for PASLCD
Tabs. 8 and 9 show per-scene quantitative results for our
PASLCD dataset under similar lighting conditions and dif-
ferent lighting conditions respectively. We consistently im-
prove the change localization performance over all the base-
lines under both settings.

In Figs. 18 and 19 (placed towards the end of Supp. Ma-
terial due to size), we show additional qualitative results for
all of the methods on PASLCD under the two lighting set-
tings.

9.2. Robustness to Distractor Visual Changes:
In Tab. 7, we report the relative loss in performance of each
method (methods having overall mIoU ↑ 0.2) when evalu-
ating under different lighting conditions versus consistent
lighting conditions. For both the mIoU and F1 metrics,
our multi-view change masks exhibit the least performance
drop under different lighting conditions, demonstrating our
robustness to distractor visual changes.

9.3. Complementary Information in Feature-Aware
and Structure-Aware Masks

In Fig. 7, we illustrate how combining structure-aware and
feature-aware masks produces a more effective candidate
mask by suppressing likely false positives. The structure-
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Figure 6. PASLCD dataset statistics. (a) Percentage of changed
pixels across all images. (b) Distribution of change types, includ-
ing structural (struct.) and surface (surf.) changes.

aware and feature-aware masks capture complementary in-
formation about false positive change predictions, as shown
in the 3rd and 4th columns of Fig. 7. While the feature-
aware mask often captures changes as blobs (over-inflating
the size of the change) due to the patch-to-pixel interpola-
tion, the structure-aware mask captures more refined change
details. However the structure-aware mask suffers from its
own false-positive predictions, often due to the edges of fine
structures in the scene or due to reflections. Combining both
masks together reduces these false change predictions in the



Figure 7. Qualitative visualization of change masks across two instances (under similar/different lighting conditions). From left to right:
the inference view, the rendered reference view, the structure-aware change mask, the feature-aware change mask, the combined candidate
mask, our predicted change mask, and the ground truth mask. The combined candidate mask effectively suppresses the distractor changes
which are likely FPs (in green) by merging complementary information in structural and feature-aware masks, while our predicted change
mask further refines the detection by suppressing false positives and aligning closely with the ground truth. The last row illustrates false
negative failure cases discussed in Sec. 9.3 (in red). Specifically, the color change in the T-shaped structure goes undetected in the feature-
aware mask, while the laminated white paper on the white table is missed in the structure-aware mask, resulting in incomplete change
detection.

candidate mask (see the 5th column in Fig. 7).
However, as discussed in Sec. 5, if one of the masks fails

to detect a change, it may result in missing the true change.
For instance, in the 3rd row of Fig. 7, the feature-aware
mask fails to capture the color change in the T-shaped struc-
ture despite the structure-aware mask flagging it, leading to
an inability to fully detect the change. This highlights a po-
tential avenue for future research: addressing the limitations
of feature masks derived from pre-trained foundation mod-
els and effectively leveraging complementary information
to produce a more refined change mask.



Table 8. Quantitative results for our PASLCD dataset, under similar lighting conditions, averaged across Indoor and Outdoor scenes.
The best values per scene are bolded.

Scene FF/360 OmniPoseAD [49] SplatPose [16] CSCDNet [36] CYWS-2D [33] Feature Diff. Ours

mIoU ↓ F1 ↓ mIoU ↓ F1 ↓ mIoU ↓ F1 ↓ mIoU ↓ F1 ↓ mIoU ↓ F1 ↓ mIoU ↓ F1 ↓

Cantina FF 0.146 0.239 0.210 0.333 0.088 0.151 0.296 0.434 0.351 0.506 0.591 0.737
Lounge FF 0.137 0.224 0.266 0.418 0.200 0.325 0.247 0.379 0.198 0.323 0.498 0.658
Printing Area FF 0.135 0.217 0.184 0.292 0.147 0.246 0.448 0.600 0.498 0.648 0.637 0.771
Lunch Room 360 0.144 0.224 0.146 0.234 0.037 0.065 0.108 0.183 0.103 0.176 0.395 0.551
Meeting Room 360 0.095 0.168 0.156 0.247 0.208 0.325 0.145 0.246 0.128 0.222 0.371 0.531
Garden FF 0.297 0.440 0.228 0.357 0.245 0.389 0.347 0.510 0.265 0.410 0.415 0.578
Pots FF 0.207 0.317 0.119 0.314 0.021 0.039 0.400 0.554 0.448 0.606 0.569 0.717
Zen FF 0.232 0.352 0.192 0.304 0.009 0.016 0.455 0.554 0.454 0.586 0.533 0.659
Playground 360 0.074 0.121 0.096 0.155 0.131 0.213 0.054 0.100 0.041 0.078 0.244 0.371
Porch 360 0.292 0.417 0.312 0.462 0.172 0.286 0.455 0.619 0.403 0.565 0.530 0.688
Average – 0.176 0.272 0.191 0.312 0.126 0.206 0.295 0.418 0.289 0.412 0.478 0.626

Table 9. Quantitative results for our PASLCD dataset, under different lighting conditions, averaged across Indoor and Outdoor scenes.
The best values per scene are bolded.

Scene FF/360 OmniPoseAD [49] SplatPose [16] CSCDNet [36] CYWS-2D [33] Feature Diff. Ours

mIoU ↓ F1 ↓ mIoU ↓ F1 ↓ mIoU ↓ F1 ↓ mIoU ↓ F1 ↓ mIoU ↓ F1 ↓ mIoU ↓ F1 ↓

Cantina FF 0.130 0.222 0.166 0.274 0.069 0.124 0.259 0.383 0.151 0.258 0.569 0.720
Lounge FF 0.161 0.258 0.257 0.402 0.189 0.311 0.196 0.317 0.156 0.269 0.428 0.593
Printing Area FF 0.179 0.267 0.181 0.283 0.147 0.245 0.206 0.314 0.366 0.520 0.539 0.697
Lunch Room 360 0.177 0.269 0.119 0.196 0.033 0.059 0.137 0.226 0.099 0.172 0.382 0.540
Meeting Room 360 0.118 0.196 0.104 0.175 0.218 0.335 0.130 0.220 0.115 0.200 0.328 0.483
Garden FF 0.249 0.382 0.141 0.243 0.236 0.377 0.346 0.508 0.318 0.479 0.456 0.623
Pots FF 0.079 0.142 0.161 0.267 0.023 0.042 0.301 0.508 0.346 0.525 0.510 0.669
Zen FF 0.255 0.375 0.179 0.288 0.010 0.019 0.445 0.596 0.434 0.568 0.466 0.606
Playground 360 0.078 0.129 0.066 0.111 0.137 0.224 0.065 0.115 0.052 0.099 0.254 0.384
Porch 360 0.255 0.375 0.166 0.263 0.180 0.297 0.423 0.595 0.354 0.511 0.505 0.664
Average – 0.160 0.252 0.154 0.250 0.124 0.203 0.251 0.378 0.239 0.360 0.444 0.598



Figure 8. Cantina scene visualizations and change descriptions.



Figure 9. Lounge scene visualizations and change descriptions.



Figure 10. Printing area scene visualizations and change descriptions.



Figure 11. Lunch room scene visualizations and change descriptions.



Figure 12. Meeting room scene visualizations and change descriptions.
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Figure 13. Garden scene visualizations and change descriptions.



Figure 14. Pots scene visualizations and change descriptions.



Figure 15. Zen scene visualizations and change descriptions.
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Figure 16. Playground scene visualizations and change descriptions.



Figure 17. Porch scene visualizations and change descriptions.



Figure 18. Qualitative results of each method for the indoor scenes of our dataset PASLCD.



Figure 19. Qualitative results of each method for the outdoor scenes of our dataset PASLCD.
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