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1. Immunohistochemistry Staining
IHC serves as a critical molecular mapping tool in clinical
diagnostics and research, enabling precise identification and
localization of disease-specific markers. The technique’s
power lies in its ability to reveal the molecular and cellu-
lar landscape of pathological processes, providing crucial
information for diagnosis, prognosis, and treatment deci-
sions.

In autoimmune disease diagnosis and monitoring, IHC
enables detailed immune cell profiling through the charac-
terization of inflammatory infiltrates and quantification of
specific immune cell populations. This information reveals
patterns of autoantibody deposits, complement activation,
and tissue-specific autoantigen expression. The technique
proves particularly valuable in assessing disease activity
through the evaluation of inflammatory marker expression
and monitoring tissue damage and repair processes.

IHC’s integration into clinical decision-making repre-
sents a cornerstone of modern pathology practice. It sup-
ports diagnostic algorithms by validating initial morpholog-
ical findings and resolving differential diagnoses through
confirmation of disease-specific molecular patterns. In
treatment strategy development, IHC helps identify tar-
getable pathways and predict treatment response, enabling
more personalized therapeutic approaches.

1.1. CD Markers
CD markers (Cluster of Differentiation) are cell surface
proteins that serve as essential identifiers in immunologi-
cal analysis. Each marker identifies specific immune cell
types, enabling detailed characterization of tissue immune
responses.
• CD20 is a B-lymphocyte-specific antigen expressed on

the surface of pre-B and mature B cells. This marker
is critically important in both diagnostic and therapeutic
contexts, particularly in B-cell lymphomas and autoim-
mune disorders. CD20 serves as the target for rituximab
and other monoclonal antibody therapies, making its de-
tection crucial for treatment planning. In lymphoid tissue
analysis, CD20 staining helps identify B-cell populations
and assess their distribution within tissue architecture.

• CD21 is predominantly expressed on mature B cells and
follicular dendritic cells. It plays a crucial role in the for-
mation and maintenance of germinal centers within lym-
phoid tissues. In diagnostic pathology, CD21 staining
is particularly valuable for visualizing follicular dendritic
cell networks and assessing lymphoid tissue organization.

This marker is often used to evaluate lymphoid tissue ar-
chitecture in conditions such as lymphomas and autoim-
mune disorders.

• CD68 is a glycoprotein expressed primarily by
macrophages and monocytes. In tissue analysis, CD68
serves as a reliable marker for identifying tissue-resident
macrophages and assessing inflammatory responses. In
autoimmune disease diagnostics, CD68 staining helps
quantify macrophage infiltration and assess disease
activity.

• CD138 is a transmembrane heparan sulfate proteoglycan
primarily expressed on plasma cells and some epithelial
cells. In autoimmune disease diagnostics, CD138 helps
evaluate plasma cell infiltration and potential antibody
production sites within affected tissues.

• CD3 is a fundamental marker of T lymphocytes, ex-
pressed throughout T-cell development and maintained
on mature T cells. CD3 staining is crucial in diagnos-
ing T-cell lymphomas, assessing T-cell-mediated immune
responses. In the context of autoimmune diseases, CD3
staining helps characterize the T-cell component of in-
flammatory infiltrates.

These markers, when analyzed together, map the im-
mune cell landscape within tissues, revealing patterns of im-
mune response and inflammation that guide diagnosis and
treatment decisions.

2. Dataset Characteristics

To provide a benchmark on autoimmune multistain datasets,
we use two clinical datasets. One dataset derives from a
clinical trial, where patients with difficult to treat RA were
recruited for treatment with rituximab. The other dataset
derives from WSIs gathered for research purposes with the
purpose of examining differences between patients present-
ing with dry eyes and mouth (Sicca) and patients subse-
quently diagnosed with Sjogren’s Disease. In Figs. 1 and
2, we present clear examples of RA pathotypes and Sicca
versus Sjogren presentation. While these images high-
light characteristic differences, they represent more extreme
cases specifically selected for illustrative clarity. The actual
dataset exhibits considerably more heterogeneity in presen-
tation, with many cases showing more subtle differences. In
Table 1, we give further information on the stains present in
each dataset. Each dataset is composed of H&E slides, with
approximately 3 IHC slides of different immune biomarkers
per patient.



Figure 1. Example of low inflammatory vs high inflamma-
tory pathotype presentation in H&E and IHC stains for RA:
Rheumatoid Arthritis inflammatory pathotypes based on semi-
quantitative analysis of synovial tissue biopsies stained with H&E,
CD20+ B cells, CD68+ macrophages and IHC+ CD138 plasma
cells.

Figure 2. Example of Sicca vs Sjogren presentation in H&E
and IHC stains: On top, a patient diagnosed with Sicca, on bot-
tom a patient diagnosed with Sjogren. Here we show samples
stained with IHC stains CD3+ T cells, CD20+ B cells and CD138+
plasma cells.

Table 1. Metadata and dataset characteristics for Sjogren and
RA cohorts, including number of patients, WSIs, stains present
and average number of stains per patient. We highlight in pink
H&E staining and blue IHC.

Sjogren Rheumatoid Arthritis

No. Patients 93 153
No. Slides 347 607
No. Stains 5 4

Av. Stains per patient 3.7 3.97
Magnification 20x 10x

Total no. patches 237k 275k
Av. Patches per patient 2 530 1800

Patches per stain Mean Total Mean Total
HE 650 61055 434 66511

CD3 625 58712 0 0
CD138 377 35416 481 73624

CD20 626 58805 351 53768
CD21 254 23843 0 0
CD68 0 0 535 81915

ML problem type Detection Subtyping
Labels Negative 46 Low 66

Positive 47 High 87

3. Hyperparameters
We trained using the AdamW optimizer set to β1 = 0.9,
β2 = 0.98 and ϵ = 10−9, with a learning rate 1e−3 and
weight decay L2 = 0.01. No learning scheduler was used.
We show our model’s hyperparameters in Table 2.

Table 2. Our model hyperparameters. We provide the hyperpa-
rameters used for each dataset to train our model.

Dataset Seed LR # Layers PE Dim Pooling Ratio Attention Heads Dropout

RA 42 0.0001 4 20 0.7 2 0.2
Sjogren 42 0.0001 4 20 0.5 4 0.2

4. Memory Usage
Table 3 presents the RAM and VRAM utilization across all
models compared against BioX-CPath. The varying RAM
requirements stem from the distinct input representations
each model processes: ABMIL/CLAM/TransMIL operate
on embeddings, PatchGCN/GTP utilize region adjacency
graphs, DeepGraphConv and MUSTANG work with fea-
ture space graphs, while BioX-CPath processes both fea-
ture and region adjacency graphs. VRAM consumption dif-
ferences reflect the architectural complexity of each model.
While simpler architectures like ABMIL [3] demonstrate
minimal VRAM usage, our model’s incorporation of GAT
self-attention operations and an additional MHSA mecha-
nism for interpretability results in higher peak VRAM con-
sumption. We consider this increased memory footprint
an acceptable trade-off given the model’s superior perfor-
mance and enhanced explainability. Future research could
focus on developing a more memory-efficient architecture
that maintains these characteristics, enabling translation to
clinical practice.

Table 3. Training and inference memory usage. The table shows
both RAM and VRAM peak usage during training and inference
for the benchmark models shown in the main results table. We
present results for the Sjogren dataset. Lower is better.

Model Training Inference
RAM (GB ↓) VRAM (GB↓) RAM (GB↓) VRAM (GB↓)

ABMIL [3] 38.11 0.09 32.93 0.09
CLAM-SB [7] 44.38 0.14 45.03 0.10
TransMIL [8] 35.87 1.47 29.39 0.79
DeepGraphConv [6] 55.65 1.31 45.10 0.68
Patch-GCN [1] 41.03 7.42 41.99 4.37
GTP [9] 47.11 2.40 48.15 1.97
MUSTANG [2] 36.00 6.18 36.25 3.52
BioX-CPath (ours) 41.30 11.25 36.61 9.19

5. Technical clarification
The feature matrix is obtained through a hierarchical data
loading architecture: (1) A slide-level DataLoader pro-
cesses each stain-specific WSI, extracting patches and asso-
ciated metadata (stain type, spatial coordinates, patient ID);



(2) A patient-level loader stacks the stain-specific embed-
dings through vertical concatenation; (3) graphs are con-
structed using patch embeddings as node features with dual-
criteria edge connectivity (feature and spatial proximity).
The preprocessed patient graphs are then stored, loaded &
batched with PyTorch Geometric DataLoader. We keep
track of node and edge attributes, stored as categorical la-
bels, through each layer of our model by mapping and stor-
ing their IDs after each pooling operation. When nodes
are removed, edges are systematically pruned where either
the source or target node was dropped, updating the edge
list accordingly. While this can lead to disconnected com-
ponents, the high initial connectivity of the patient graphs
means these components emerge only in deeper layers of
the encoder, where they exhibit “specialized” attention pat-
terns focusing on specific stain or tissue regions. We ex-
emplify this with a layer-wise graph WSIs overlay shown
in Figure 6. The max (OR) operator was chosen over min
(AND), based on graph connectivity patterns: using AND
overly restricts edges (∼10%), limiting message passing
and cross-stain interactions. In contrast, OR preserves lo-
cal and global connectivity, allowing the SAAP module to
dynamically prioritize relevant edges. These design choices
are all aimed at optimizing computational resources and
information flow, under minimal supervision requirements
(patient-level labels and stain-type slide annotations), while
ensuring interpretable biologically-aligned results.

6. Stain-Stain Interactions
The stain-stain interaction patterns highlight key insights
into model decision dynamics, which further deepen our
understanding of model behavior and can be linked back to
biological mechanisms. These attention-based interactions
quantify how the model integrates information across dif-
ferent stain types when making classifications. We present
the distribution of stain-stain interactions for both RA and
Sjogren’s in Figure 3 and 4.

6.1. RA
The stain-stain attention analysis reveals a consistent de-
crease in all self-interactions (CD138-CD138: −7.5%,
CD20-CD20: −4.7%, H&E-H&E: −5.5%, CD68-CD68:
−4.5%) in Lymphoid/Myeloid compared to Pauci-Immune
pathotypes, suggesting a shift from examining intra-stain
features toward integrated cross-stain attention patterns,
which aligns with the higher entropy scores observed
in Lymphoid/Myeloid and the known diffuse inflamma-
tory infiltrates characteristic of this pathotype. The most
pronounced changes in cross-stain interactions occur be-
tween lymphocyte markers and other stains (CD138-CD20:
−7.4%, CD138-H&E: −5.3%, CD20-H&E: −5.3%), re-
flecting the disruption of normal tissue architecture by
immune infiltrates in Lymphoid/Myeloid disease. In

contrast, macrophage-related interactions (CD68-H&E:
−4.4%, CD138-CD68: −4.2%, CD20-CD68: −4.0%)
show more modest changes, suggesting a more consistent
role for macrophages across pathotypes. The overall higher
and more variable attention weights in Pauci-Immune sam-
ples compared to the more uniform, lower weights in Lym-
phoid/Myeloid indicate that Pauci-Immune classification
relies on stronger, more specific feature relationships. Lym-
phoid/Myeloid requires broader integration of multiple sig-
nals, which is consistent with its more complex, heteroge-
neous inflammatory profile [5].

6.2. Sjogren
We see a systematic decrease in self-interactions (CD20-
CD20: −6.0%, CD3-CD3: −2.2%, CD21-CD21: −2.1%,
CD138-CD138: −1.3%), which suggests a shift from pay-
ing attention more broadly to the overall context in each
single stain, and more toward integrated localized atten-
tion spanning across stain types, which aligns with the
lower entropy scores obtained for Sjogren stains and the
known pathology of more structured lymphoid organiza-
tion in Sjogren [4]. We also note differences in the
structural-immune interactions between Sjogren vs Sicca,
with an increase in stain-stain attention between HE-CD21
(+3.8%), HE-CD138 (+1.9%) and HE-CD3 (+1.2%) and
a decrease in attention between HE-CD20 (−4.5%). On
the other hand, changes in immune-immune interactions
(CD138-CD3: −2.9%, CD138-CD20: −2.2%, CD20-
CD3: −2.2%), taken in the context of the balanced stain
attention scores obtained for these markers, also suggests a
balanced model that integrates information across immune
markers.

7. GNN Heatmaps
In Fig. 5, we show an example of the multistain stack of
WSIs (CD138, CD3, CD20, C21, and HE) for one Sjogren
positive patient, with the obtained cumulative node atten-
tion heatmap for each input stains. The stack of multistain
WSIs is the input to our model, and the obtained GNN node
heatmaps correspond to the direct mapping of the node at-
tention scores to their original spatial location. We note
that our proposed GNN heatmap accurately picks up on
the presence of inflammatory aggregates in CD3, CD20,
and H&E, as well as on more disperse attention patterns in
CD138 and CD21. CD18 plasma cells are always present
throughout the tissue, but will become over-activated and
more prevalent in the inflamed tissue, leading to a more dif-
fuse attention pattern. CD21 also accurately focuses on ar-
eas with presence of inflammatory aggregates, however also
shows a more disperse attention pattern, potentially due to
the smaller and fainter aggregates, compared to CD3/CD20
and H%E.

To illustrate cross-stack stain-stain interaction and the



Figure 3. Distribution of stain-to-stain interaction scores for Pauci-Immune (Label 0, left) and Lymphoid/Myeloid (Label 1, right) cases.
Each subplot shows the distribution of the average stain-stain attention scores for each stain pair (CD138, CD20, CD68, and H&E) interact
with each other. For each source stain (x-axis), the box plots represent the distribution of interaction scores given to each target stain
(colored boxes).

Figure 4. Distribution of stain-to-stain interaction scores for Sicca (Label 0, left) and Sjogren (Label 1, right) cases. Each subplot shows
how different stains (CD138, CD20, CD21, CD3, and HE) interact with each other. For each source stain (x-axis), the box plots represent
the distribution of interaction scores given to each target stain (colored boxes).

Figure 5. Cumulative GNN node attention heatmap obtained for a Sjogren positive patient with a stack of WSIs consisting of staining
for CD138, CD20, C21, CD3 and H&E, where the red edges connecting across and correspond to region adjacency connectivity and the
blue edges to the feature space connectivity. This stack is the input to our model and the obtained GNN heatmap corresponds to the direct
mapping of the node attention scores back to their original spatial location.



Figure 6. Sparsification of input GFRA through the GNN layers. We plot the multistain patient input graph GFRA as a spatial overlay
on the stack of WSIs, to exemplify the connectivity both across and in the images. Edges connect nearest neighbors in both feature (blue)
and region adjacent (red) space, with edges which are both feature and region nearest neighbors shown as purple.

graph sparsification process through our model, Figure 6
shows GFRA overlaid on the WSIs stack. The layer 1
graph is initially dense with two edge types: region-adjacent
edges (red) connecting both across different stains and be-
tween spatial neighbors within each WSI, and feature-space
edges (blue) linking semantically similar patches regard-
less of their location. As the graph progresses through
the layers, it undergoes progressive sparsification. The
transition shows a shift from more homogeneous distri-
butions toward targeted cross-stain interactions, aligning
with our quantitative findings of decreased self-attention
and enhanced cross-stain integration. By layer 4, the pre-
served connections highlight important structural-immune
relationships between tissue architecture (HE) and immune
markers (CD3, CD20, CD21). This progressive refinement

demonstrates how the model identifies the organized, inte-
grated nature of immune infiltrates in Sjogren’s, capturing
diagnostically relevant cross-stain relationships rather than
analyzing markers in isolation.

8. Layer Importance

We previously mentioned we chose to maintain a MHSA
layer before the classification head in our model architec-
ture, despite seeing a marginal performance drop in. This is
because we considered it was a good trade-off with obtained
additional insight into the model decision mechanics, pro-
viding another aspect to the explainability of our model with
layer importance scores. Briefly, we concatenate the fixed
size readouts obtained from each layer of our hierarchical



Figure 7. Layer-wise attention patterns by label in the hierarchical graph patient encoder, showing the distribution of attention scores
across layers (1-4) for Pauci-Immune and Lymphoid/Myeloid cases, with corresponding mean (µ) and standard deviation (σ) values.

Figure 8. Layer-wise attention visualization for a CD18-stained WSI Lymphoid/Myeloid RA patient. The heatmaps show progression
from broad attention in Layer 1 to increasingly focused attention in subsequent layers, with Layer 2 exhibiting the strongest patterns,
consistent with quantitative attention scores. Bottom panels show highest and lowest attention patches, revealing cellular infiltrates in
high-attention regions.

Figure 9. Layer-wise attention patterns by label in the hierarchical graph patient encoder, showing the distribution of attention scores
across layers (1-4) for Sicca and Sjogren cases, with corresponding mean (µ) and standard deviation (σ) values.



graph patient encoder. This concatenated readout vector is
the input to our MHSA. Because we know the size of each
layer readout, we can now take the simple step of summing
the corresponding attention weights. The rational is this will
give us further insight into the role played by each layer in
the model decision process and can potentially highlight in-
herent characteristics on the input data. We present these
results in Figures 7 and 9.

8.1. RA
The layer attention results reveal distinct patterns between
pathotypes. Pauci-Immune samples show balanced atten-
tion across Layers 2-4 (µ = 0.38, µ = 0.31, µ = 0.32),
suggesting reliance on features at multiple abstraction lev-
els. In contrast, Lymphoid/Myeloid samples demonstrate
strong preference for Layer 2 (µ = 0.47, σ = 0.08), indi-
cating mid-level features are particularly diagnostic. This
aligns with our stain-stain interaction findings, where Lym-
phoid/Myeloid showed decreased self-attention and likely
depends more on cross-stain integrations occurring at inter-
mediate layers. Both pathotypes assign minimal attention
to Layer 1 (µ = 0.00), indicating here the raw features
have limited classification value without higher-level pro-
cessing. The higher variance in Layer 2 attention for Lym-
phoid/Myeloid (σ = 0.08 vs σ = 0.02) suggests greater
patient-to-patient variability, consistent with its more het-
erogeneous inflammatory profile.

To exemplify this process, in Figure 8 we show the
GNN node attention heatmaps obtained for each layer of
the model for a WSI with CD18 staining of a RA patient
with Lymphoid/Myeloid subtype. We can see a progres-
sive refinement of attention across the layers, with Layer
1 showing broad, diffuse attention across the tissue, while
Layers 2-4 reveal increasingly focused attention on specific
regions. Layer 2 demonstrates the most pronounced atten-
tion patterns, concentrating on areas with visible cellular
infiltrates, which aligns with our finding that this layer re-
ceives the highest attention weight (µ = 0.47) for Lym-
phoid/Myeloid patients. Layers 3 and 4 further refine this
attention, focusing on smaller, more specific regions that
likely represent areas with distinctive immune cell aggre-
gates. This visualization supports our quantitative findings
and illustrates how the model progressively builds its under-
standing of the pathotype from general tissue architecture
to specific inflammatory aggregates characteristic of Lym-
phoid/Myeloid disease.

8.2. Sjogren
The layer attention distributions reveal distinct hierarchi-
cal processing patterns between Sicca and Sjogren’s. For
Sicca, attention is negligible in Layer 1 (µ = 0.03, σ =
0.10) but distributes relatively uniformly across Layers 2-4
(µ = 0.34, µ = 0.32, µ = 0.31 respectively). In contrast,

Sjogren’s shows substantial Layer 1 attention (µ = 0.17,
σ = 0.18) followed by peak attention at Layer 2 (µ = 0.38,
σ = 0.05) and then progressive decline through Layers 3-
4 (µ = 0.30, µ = 0.15), with higher variance observed
for Layers 1 and 4. The higher early-layer attention in
Sjogren’s suggests the model identifies organized immune
structures in initial processing stages, corresponding to the
decreased self-attention and increased cross-stain integra-
tion observed in Sjogren’s stain-stain interaction scores.
The declining attention pattern in deeper layers for Sjo-
gren’s, compared to sustained attention in Sicca, indicates
different processing requirements: Sjogren’s features are
captured earlier through identification of organized lym-
phoid structures, while Sicca requires more distributed pro-
cessing across abstraction levels, consistent with its more
homogeneous, less structured immune distributions (re-
flected in higher entropy values).
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