Silence is Golden: Leveraging Adversarial Examples to Nullify Audio Control in
LDM-based Talking-Head Generation

Supplementary Material

A. More Experiments

A.1. More Implementation Details

The resolution of our input portrait is 512 x 512. The audio
used for training in our experiment is a four-second clip. For
testing on CelebA-HQ, the audio length is seven seconds.
In the case of TalkingHead-1KH, the audio length varies
between three and seven seconds. In our experiment, the
DDIM inversion step is set to 20. Due to the limitation of
GPU memory, we optimize only the inverted latent feature
from the final step. All experiments can be conducted using
a single NVIDIA A40 GPU.

A.2. Evaluating the Transferability of Silencer

To evaluate the transferability of Silencer (S-I and S-
II), we performed a cross-model evaluation. Adversar-
ial noise was optimized on the Hallo model and subse-
quently tested on other LDM-based talking-head genera-
tion models. Specifically, we randomly selected 20 portraits
from the TalkingHead-1KH dataset and generated talking-
head videos using the publicly available EchoMimic [6] and
Hallo2 [1]. As shown in Table 5, the synchronization val-
ues of the generated videos demonstrate that Silencer main-
tains a significant adversarial effect even when applied to
models different from the one used for optimization. Al-
though Silencer is designed as a white-box attack, these
results highlight its notable generalization capability across
various LDM-based talking-head models. This cross-model
robustness suggests the potential for broader applicability
and further validates the effectiveness of our method. A
likely explanation for the observed cross-model effective-
ness of Silencer is a combination of factors. First, these
LDM-based talking-head models share similar architectural
designs. Second, and perhaps more crucially, they are all
fine-tuned upon Stable Diffusion. This common foundation
could introduce common weaknesses or biases that Silencer
is able to exploit, even across different models.

A.3. Efficiency Analysis

We evaluated the computational efficiency on an NVIDIA
A40 GPU. The results, shown in Table 6, demonstrate a
significant difference in Silencer-I and Silencer-II. Silencer-
I exhibits superior efficiency, requiring considerably less
computational time compared to Silencer-II. This differ-
ence in efficiency stems primarily from the architectural
design of Silencer-1I. Unlike Silencer-I, Silencer-II incor-
porates an optimization step within the latent space of an

Method [| GT AdvDM(+) Mist SDST() S-I S-I

EchoMimic [6]]{4.0365 1.8252 1.7839 2.2228 1.4601 0.9973
Hallo2 [1] ||5.6661 3.2136 3.0679 3.9238 1.5952 2.0783

Table 5. Evaluating the Transferability of Silencer. Synchro-
nization scores demonstrating cross-model transferability of Si-
lencer (S-I and S-II). Videos were generated by EchoMimic [6]
and Hallo2 [1] using original (GT) and adversarial inputs. Lower
scores signify greater disruption. Despite being optimized on
Hallo, Silencer significantly impacts both models.

[[AdvDM(+) PhotoGuard Mist SDS(-) SDST(-) S-I S-IT

time[| 59 34 59 22 40 64 241

Table 6. Efficiency Analysis. Average time (seconds/image) re-
quired for different protection methods.

DiffPure timesteps [[ 50 100 150

Silencer-I 30.65/0.2606 29.26/0.2540 28.13/0.2691
Silencer-11 27.80/0.4057 27.26/0.3909 26.82/0.3504

Table 7. Ablation on Timesteps of DiffPure [3]. We present I-
PSNR/LPIPS scores for Silencer-I and Silencer-II after applying
DiffPure with varying timesteps. Red values highlight greater ro-
bustness.

additional LDM. This additional optimization process intro-
duces a substantial computational overhead, increasing the
overall time required for Silencer-II to generate adversar-
ial examples. While this optimization contributes to more
robust perturbations, it comes at the cost of reduced compu-
tational efficiency. Silencer-1, by contrast, avoids this ex-
tra optimization step, leading to a more streamlined and
faster process. While Silencer-I takes 64 seconds per im-
age, its runtime is comparable to other methods like Ad-
vDM(+) and Mist (59 seconds). This makes Silencer-I a
more practical choice in scenarios where computational re-
sources are limited or where rapid generation of adversarial
examples is critical. Notably, SDS(-) demonstrate signifi-
cantly faster runtimes, due to skipping the UNet portion of
the gradient calculation. However, whether such an opti-
mization can be effectively and reliably applied within an
LDM-based talking-head network to improve efficiency re-
mains an open challenge for future research.



GrIDPure timesteps H 5 10 15

28.35/0.1672 28.16/0.1698 27.93/0.2016
25.81/0.3451 25.72/0.3511 25.59/0.3610

Silencer-I
Silencer-II

Table 8. Ablation on Timesteps of GrIDPure [5]. We present
[-PSNR/LPIPS scores for Silencer-I and Silencer-II after applying
GrIDPure purification. GrIDPure was run for 20 iterations with
initial timesteps of 5, 10, and 15. Red values highlight greater
robustness.

| DiffAudio SameAudio
Silencer-II 3.9685 2.4926
Ground Truth 6.4041 5.7509

Table 9. Impact of Audio Consistency on Silencer-II while
Training and Testing with CelebA-HQ. "DiffAudio” denotes us-
ing different audio for training and testing, while ”SameAudio”
uses the same audio. Lower Sync value is better.

ling || V-PSNR/SSIM| FIDt  Sync| M-LMD?
8/255 19.59/0.5768 7878  4.8368  2.0444
16/255 19.02/0.5104  124.07 4.0644  2.2008

Table 10. Ablation Study of /;,; Perturbation Budgets in
Silencer-I on CelebA-HQ.

Inverted Timesteps [| V-PSNR/SSIM| FID? Sync| M-LMD?

19.01/0.5111  156.99 3.9685 2.2108
19.30/0.5402 111.99 4.4579 2.1731

the last one
the last two

Table 11. Ablation Study of Inverted Timesteps in Silencer-II
on CelebA-HQ.

A.4. More Ablation Study

Ablation Study on Timesteps in Purification Methods.
Our anti-purification experiments are conducted using the
publicly available implementation'. For DiffPure, we set
the diffusion timestep to 100, while for GrIDPure, we use a
timestep of 10 with 20 iterations. We conduct the ablation
experiments on different settings of diffusion-based purifi-
cation. Table 7 and Table 8 illustrate the effectiveness of
Silencer-I and Silencer-II against image purification tech-
niques, specifically DiffPure and GrIDPure, across different
timesteps. The tables compare I-PSNR and LPIPS scores
for images processed by both Silencer versions. While
larger timesteps in these purification methods improve the
smoothness of the resulting images, they fail to completely
remove the perturbations introduced by Silencer-II. This

Uhttps://github.com/zhengyuezhao/gridpure

Silencer-11

Clean

Inversion+Ly

Figure 7. Ablation Study on L1 in Silencer-II. Without the as-
sistance of L, the generated perturbation becomes highly notice-
able, significantly compromising the facial identity.

s [ 50 75 100 125 200
I-SSIMT [[ 07125  0.6998 0.6918 0.6844 0.6704
FID? 136.88  166.10 173.18  171.08  193.46
Sync| || 55725 50413 4.0602 4.1832 4.0791
M-LMD? || 1.8559 2.1371 22053 23748 2.3563

Table 12. Ablation Study on the Initial Iteration s without
Mask. Larger iterations without the face mask lead to better pro-
tection performance with lower image quality.

highlights the robustness of our approach.

Ablation Study on Audio and Portrait in the Training
and Testing of CelebA-HQ. For audio, We investigated
the effect of using the same versus different audio inputs
during the training and testing phases. This tests whether
Silencer is overly sensitive to specific audio characteristics
or if it can generalize to unseen audio. As shown in Table 9,
both scenarios resulted in a reduction of the synchroniza-
tion value compared to the ground truth. The decrease in
synchronization demonstrates that Silencer effectively dis-
rupts synchronization regardless of whether the audio in-
put is consistent between training and testing. This finding
highlights the robustness of the Silencer method to varia-
tions in audio input, suggesting that it is not overfitting to
specific audio features.

For the starting portrait, we conducted experiments on
50 different portraits of CelebA-HQ in Table 1. The average
sync value is 3.9685 and the standard deviation is 1.5607.
Our findings indicate that the effectiveness of adversarial
perturbations varies across different facial identities, sug-
gesting variations in inherent robustness. We intend to in-
vestigate the factors contributing to this variability in future
research.

Ablation Study on Perturbation Budget in Silencer-I.
To understand the influence of the perturbation budget on
the effectiveness of Silencer-I, we conducted an ablation
study on the CelebA-HQ dataset. Specifically, we investi-
gated the performance of Silencer-I under constrained 5, f



Figure 8. Visualization Results with Different Iteration s. The
quality of the portrait decreases with the growth of s.

perturbation budgets. The /;,, ¢ limits the maximum change
allowed for any single pixel value in the input image. A
smaller budget implies a more subtle, less perceptible ad-
versarial perturbation. As shown in Table 10, we evalu-
ated Silencer-1 with two different l;, budget: 8/255 and
16/255. The results demonstrate that decreasing the per-
turbation budget leads to a reduction in Silencer-I’s perfor-
mance. This is because a smaller budget restricts the de-
gree to which Silencer-I can modify the input image to dis-
rupt synchronization. However, even with a stricter budget,
Silencer-I still achieves a notable level of protection perfor-
mance compared with existing methods in Table 1. This
suggests that Silencer-I is more effective, achieving consid-
erable protection with fewer changes to the input portrait.

Ablation Study on Inverted Timesteps in Silencer-II.
We conducted an ablation study on the inverted latent space
timesteps used in Silencer-II. Due to memory constraints,
we investigated the impact of optimizing the latent feature
for the final timestep versus optimizing for the final two
timesteps specifically in the context of DDIM inversion. As
shown in Table 11, optimizing the latent feature at only the
final timestep yielded superior performance while consum-
ing fewer resources compared to optimizing the last two
steps. Consequently, we opted for the single-timestep op-
timization strategy. Further exploration is needed to im-
prove the efficiency and effectiveness of latent feature opti-
mization, addressing potential vulnerabilities to purification
methods.

Ablation Study on L1 in Silencer-II. We perform an ab-
lation study to evaluate the effectiveness of L in optimiz-
ing the inverted latent representation. As shown in Fig. 7,

while the nullifying loss £ still produces disturbed results,
it achieves this by distorting the portrait, compromising the
output’s quality and identification. It is mainly because the
talking-head model fails to operate effectively when it can-
not detect a face, rendering it unable to function as intended.
This highlights the necessity of exploring optimized solu-
tions that protect privacy without sacrificing visual integrity.
With the assistance of L7, we can effectively reduce noise
in the facial region while achieving our intended objectives.
This approach strikes a balance between minimizing dis-
tortions and achieving the desired outcomes, enhancing the
overall effectiveness of Silencer.

Ablation Study on the Initial Iteration s without Mask
in Silencer-II. To prevent facial blurring, we incorporate
a face mask during the training process of Silencer-1I. We
begin by training the entire image without a mask for s iter-
ations. Subsequently, a face mask is applied to exclude the
facial region from further optimization. To verify the effect
of s, we conduct an ablation study on a subset of CelebA-
HQ, as shown in Fig. 8 and Table 12. The results indicate
that as the number of iterations s increases, face quality de-
teriorates while protection performance improves. There-
fore, we set s = 100 in our main experiments as it offers
a balanced trade-off between maintaining facial clarity and
achieving effective protection.

A.5. Additional Visual Results

Additional qualitative comparisons are presented in Fig. 9
and Fig. 10. These figures illustrate that our Silencer con-
sistently achieves superior protection performance across
various datasets. These video results can be found in our
supplementary video.
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Figure 9. Additional Visualization Comparison with Image Protection Methods in CelebA-HQ [2].

Method Clean

Silencer-1  Silencer-II

== e

AdvDM(+) PhotoGuard Mist SDS(+) SDS(-)

P

SDTS(-)

Protect

Talking

Protect

Talking

Figure 10. Additional Visualization Comparison with Image Protection Methods in TalkingHead-1KH [4].
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