
Pattern Analogies
Learning to Perform Programmatic Image Edits by Analogy

Supplementary

Aditya Ganeshan∗

Brown University
Thibault Groueix
Adobe Research

Paul Guerrero
Adobe Research

Radomı́r Měch
Adobe Research

Matthew Fisher
Adobe Research

Daniel Ritchie
Brown University

1. Introduction
In this document, we present additional details regarding
our system. First, we provide a brief overview of the videos
included in the supplemental material. Next, in section 3,
we provide details of the proposed Domain Specific Lan-
guage (DSL), SPLITWEAVE, including the design of the
two pattern-style specific program samplers. Section 5 pro-
vides additional details regarding Analogical Quartet Sam-
pling, detailing the programmatic pattern edits employed.
This is followed by details of our test dataset and the three
applications enabled by our approach in Section 6. Finally,
Sections 7, 8, 9 presents additional experiments and results,
including qualitative examples and failure cases. The code
for our system — the DSL, program samplers, and model
training — will be open sourced if and when the paper is
accepted.

2. Video Results
We provide the following videos in the supplemental mate-
rials:

1. A video titled editing.mp4which demonstrates the
use of SPLITWEAVE for editing real-world patterns
with simple pattern analogies.

2. A video titled pattern animation.mp4 which
presents our results for pattern animation transfer.
Please refer to section 6.2 for more details on trans-
ferring pattern animations.

3. A language for visual patterns
In the main paper, we introduced SPLITWEAVE, a DSL de-
signed for creating visual patterns. As described previously,

*Work performed during an internship at Adobe Research

we use SPLITWEAVE to (a) generate a large dataset of high-
quality synthetic patterns for training an analogical editor
and (b) to define parametric analogy pairs (A,A′) at test-
time to guide transformation in target pattern B. Further,
we constructed two custom SPLITWEAVE program sam-
plers which aid the sampling of high-quality synthetic pat-
terns in two domains, namely Motif Tiling Patterns (MTP),
and Split Filling Patterns (SFP).

SPLITWEAVE is designed specifically for generating
patterns that exhibit structured partitioning of a 2D canvas.
Programs in SPLITWEAVE define a process to map each
spatial location on the canvas to an RGBA value, resulting
in a visual pattern. This process is achieved through two
core mappings: (1) spatial locations (x, y) are first mapped
to 2D UV coordinates and (2) UV coordinates are then
mapped to outputs such as RGBA values or other signals.
SPLITWEAVE provides operators to abstract and simplify
these mappings.

3.1. UVExpr and SExpr

UVExpr and SExpr are the two key types of expressions
used in SPLITWEAVE programs to define these mappings:

UVExpr A UVExpr defines a function

UVExpr : R2 → R2,

which maps each spatial location (x, y) on the canvas to
a corresponding UV coordinate (u, v). This provides a
spatial framework for pattern generation, enabling opera-
tions such as distortions, tiling, or structured partitioning
(e.g., BrickSplit, HexagonalSplit). Evaluating a
UVExpr generates a UV grid which serves as the basis for
further evaluating SExprs.

1

Figure 1. Program evaluation We illustrate the evaluation of a SPLITWEAVE program. SPLITWEAVE is used to create directed acyclic
graphs representing data flow between different operators. The UV Grid Operators are used to define UVExprs, which map spatial
coordinate to UV grids. Signal Operators are used to define SExprs which map UV-Grids to single or multi-channel spatial maps (such
as RGBA canvases). Spatially Varying Operators take inputs such as UV-Grids and Fragment Ids to apply spatially varying transforms.
Finally, Utility Operators perform tasks such as composing multiple RGBA canvases together.

SExpr A SExpr defines a function

SExpr : R2 → RN ,

which maps each UV coordinate (u, v) ∈ R2 to an N -
dimensional output. The value of N depends on the type of
output being generated. SExprs that evaluate to 4-channel
outputs (N = 4) are typically used to generate RGBA
canvases. Alternatively, SExprs which evaluate to single-
channel outputs(N = 1) are used to generate single-channel
buffers used to represent spatial masks, distortion fields, or
other intermediate signals.

UVExprs are primarily used to generate structured par-
titions of the canvas through partitioning operators (e.g.,
BrickSplit). Evaluating these operators produce not only
a corresponding UV grid, but also a fragment ID buffer,
where each spatial location is assigned a fragment identi-
fier corresponding to its partition. As operators are com-
posed, the fragment ID buffers are updated and stacked, en-
abling hierarchical partitioning and fragment-aware trans-
formations. This mechanism is critical for supporting Spa-
tially Varying Transformations, used in Motif Tiling Pat-
terns (MTP), where operations vary based on partitioning,
and Fragment Grouping, essential for Split- Filling Patterns
(SFP), where fragments are grouped together for applying
color fills.

SExprs typically contain analytical functions defining
SVG objects, such as 2D circles, Bezier curves etc, and
Texuture-Mapping operators, which map UV coordinates
to samples on pre-defined 2D maps. Texture mapping op-
erators are primarily used for mapping RGBA tiles on UV
grids. Evaluating SExpr on different UV-grids results in

different outputs. These outputs are used to generate RGBA
canvases or auxiliary data buffers for generating the visual
pattern image.

3.2. Operator Categories

SPLITWEAVE provides four broad categories of operators
to support the construction of UVExprs, SExprs, and their
transformations:

1. ∼ 50 UV Grid Operators: Used to define UVExprs.
2. ∼ 70 Signal Operators: Used to define SExprs.
3. 10 Spatially Varying Operators: Used to define trans-

formations in a partition-aware manner using frag-
ment IDs (e.g., resizing alternate rows or applying per-
fragment coloring).

4. Utility Operators: Used for remaining purposes such
as combining multiple canvases (SourceOver) or gen-
erating auxiliary spatial signals used in fragment-
aware operations.

In Figure 1, we illustrate the evaluation of a
SPLITWEAVE program used to create a MTP pattern. This
program uses all the four different types of operators,
each associated with a separate color. To create the pat-
tern, we separately create a background canvas and a fore-
ground canvas. To create the foreground canvas, we first
convert the pixel-space canvas to a UV cartesian grid (∈
[−1, 1]2) using Cartesian. This grid is subsequently
rotated using the Rotate operator. Next, by using the
BrickSplit operator, we create two outputs, a trans-
formed UV-grid, which now consists of brick-style spatial
partitions, and a 2D fragment-ID buffer containing integers

tile_cfg:
 tileset: [
 CfgNode({'tilefile': 'rramblrk_0.png',
 'tile_effects': CfgNode({'do_rotate': False, 'rot': 0,
 ..., 'opacity': 0.75})}),
 CfgNode({'tilefile': 'rramblrk_1.png',
 'tile_effects': CfgNode({'do_reflect': True, 'rot': 0,
 ..., 'opacity': 1.0})})]
 tile_order:
 signal:
 _type: DiscreteSignal
 discrete_mode: y
 k: 2
 ...
layout_cfg:
 deform:
 _type: no_deform
 post_deform: ...
 pre_deform: ...
 split:
 _type: RectRepeatShiftedY
 ...
cellfx_cfg:
 effects: [CfgNode({'_type': 'ScaleFx', 'scale': 0.4818, 'mode': 'single',
 'signal': CfgNode({'crop_x': 0.5,
 'discrete_mode': 'x',
 'k': 2,
 ... })})]
bg_cfg:
 ...
border_cfg: None
fill_cfg: None

Sample Compile Execute

Attribute Tree SplitWeaver Program

Pattern

Figure 2. Our Custom program samplers Φ generates attribute trees AT , a hierarchical data structure that encodes patterns structure
specification. The attribute trees are then compiled into SPLITWEAVE programs. Finally, we generate visual patterns by evaluating
SPLITWEAVE program. The use of Φ and AT help generate high-quality synthetic patterns.

that corresponds to fragment IDs. Using the fragment-ID
buffer, we apply spatially-varying scaling to decrease the
size of tiles in alternate columns. This is followed by a
ApplyTile operator to create the foreground canvas. In-
ternally, ApplyTile evaluates the SExprs corresponding
to each tile on the transformed UV-grid, and merges alter-
nate rows of the resulting two RGBA canvases using the
fragment-ids from BrickSplit. A similar process is fol-
lowed for the background to obtain the background canvas.
Finally, we combine the background and foreground with
the SourceOver operator to obtain the final MTP pattern.

3.3. Implementation

SPLITWEAVE is implemented in Python, making it acces-
sible to a wide range of users, including those with limited
programming experience. This lowers the learning curve
for novice users and facilitates integration with emerging
tools, such as large language models (LLMs), for program-
matic generation and manipulation of visual patterns. The
core operators in SPLITWEAVE are implemented using Py-
Torch [10], which allows many of the operators to be auto-
matically differentiable. This opens up exciting possibilities
for future work in using automatic differentiation for visual
program inference, enabling the recovery of programmatic
structures directly from visual patterns.

We have also developed a front-end application us-
ing Rete.js [3] to support visual programming with
SPLITWEAVE. This tool simplifies the creation and ma-
nipulation of SPLITWEAVE programs by providing an intu-
itive, node-based interface. Manipulation of SPLITWEAVE
programs using this interface is demonstrated in the supple-
mental videos. Currently implemented as a proof of con-
cept, it is primarily intended for inspecting SPLITWEAVE
programs and performing parametric analogical edits on
real-world patterns. Future work will focus on refining the
application to make it more user-friendly and suitable for

broader usage. We hope that SPLITWEAVE serves as a step-
ping stone for further research in visual pattern generation
and manipulation, inspiring new methodologies and appli-
cations in this domain.

4. Custom Program Samplers
As discussed in the main paper, random sampling of the
SPLITWEAVE grammar often produces poor-quality pat-
terns that are incoherent or irrelevant for training. To ad-
dress this limitation, we construct custom program samplers
designed to generate high-quality SPLITWEAVE programs
through a structured, hierarchical process.

The custom program samplers work by generating an at-
tribute tree, a hierarchical data structure that encodes the
specification for a pattern. This attribute tree is then com-
piled into a valid SPLITWEAVE program, which, when exe-
cuted, produces the final visual pattern. The pipeline can be
formalized as:

Φ
Sample−−−−→ AT

Compile−−−−→ PSW
Execute−−−−→ Pattern,

where Φ is a high-level process specification that defines
the abstract structure of the pattern, AT is the attribute tree
that instantiates this structure with specific parameters, and
the resulting SPLITWEAVE program, represented as PSW ,
defines the procedural steps to produce the pattern. Figure 2
illustrates this workflow with an example, showing the at-
tribute tree, its compilation into a SPLITWEAVE program,
and the resulting visual pattern.

The attribute tree AT is constructed by first designing an
abstract process specification Φ that represents the steps in-
volved in creating a pattern. For example, in Motif Tiling
Patterns (MTP), Φ includes stages such as sampling tiles,
sampling layout parameters, and sampling effects like back-
ground elements. Each stage in Φ corresponds to a node or
sub-tree in AT , where the nodes represent specific compo-

Motif Tiling Motif Tiling Motif TilingMotif TilingSplit Filling Split Filling Split Filling

Poor Synthetic Pattern SamplesStandard Synthetic Pattern Samples

Figure 3. We present synthetic samples generated by our custom program samplers for two pattern styles, namely, Motif Tiling Patterns
(MTP) and Split Filling Pattern (SFP). The custom program sampler can still produce poor quality patterns as depicted in the rightmost
two columns.

nents, and the edges encode relationships or contextual pa-
rameters. To populate AT , we implement domain-specific
random samplers for each node in the tree. These samplers
generate valid and diverse configurations for their respec-
tive components. At the top level, a hierarchical sampler
integrates these components to form a complete attribute
tree. For instance, the MTP sampler samples specification
for canvas partitioning, tiles and their transformations and
spatially varying effects, combining them into a unified rep-
resentation.

The hierarchical nature of the attribute tree allows mod-
ular control over each component, enabling flexibility and
extensibility. By sampling each node independently, the
custom samplers ensure that the resulting patterns are both
diverse and semantically meaningful, addressing the chal-
lenges of random grammar sampling. Once the attribute
tree AT is constructed, it is compiled into a SPLITWEAVE
program. This compilation step translates the hierarchi-
cal structure and parameters encoded in AT into valid
SPLITWEAVE code, adhering to the syntax and semantics
of the DSL. Executing the compiled SPLITWEAVE program
produces the final visual pattern. This structured workflow
provides a controlled and flexible framework for generat-
ing patterns. The combination of a process-driven attribute
tree design and creation of pattern style-specific samplers
ensures the generation of high-quality visual patterns.

In figure 3, we present synthetic samples of both MTP
and SFP styles generated by this process. We also show fail-

Figure 4. We generate tiles for MTP patterns using LayerDif-
fuse [16]. We present both good quality tiles (top 3 rows) and
poor quality tiles (bottom row).

ure cases in the two right-most columns. The custom sam-
pler for MTP patterns sometimes generates samples with a
high amount of stretching, too much visual complexity, or
sparse tiling. Similarly, SFP pattern sampler can fail due
to trivial grid partitioning, over-zooming, or poor random
color section.

To create the MTP patterns we also generate a large

Poor Analogy QuartetsStandard Analogy Quartets

Figure 5. We present analogical quartets created using our approach. While many analogical quarters are of good quality, our synthetic
sampling process can also result in poor quality quartets, as shown in the right-most column.

dataset of 100, 000 RGBA tiles. Earlier experiments with
fewer tiles showed that having a diverse and large set of
tiles is essential to generalize to ‘in-the-wild’ real-world
patterns. To create tiles on a large variety of subjects, we
first extract a subset of nouns from wordnet-synset [8].
First, we prune the nouns by type (avoiding types such as
‘event’, ‘process’), followed by rejection based on keyword
match (to avoid different forms of ‘bacteria’, ‘virus’ etc.).
Finally, we use SigLIP [15] text-encoding of prompts in the
form of ‘‘A photo of a/an $item’’ to cluster the
nouns and extract ∼ 10, 000 distinct nouns. These nouns
are then used to create text-prompts using a template of the
form ‘‘A minimal $style $second term of
a $noun $minimalism on a $color scheme
background.’’ where the variables such as $style
and $second term are filled with random samples from
list of keywords. Then, we generate RGBA images for each
prompt using LayerDiffuse [16], which generates images
with alpha maps. Finally, tiles are created by extracting
a tight bounding box subset of the generated image, with

simple thresholds to reject samples in case of too high and
too low complexity (measured using JPEG [14] compres-
sion). Figure 4 presents a few samples of tiles generated
by this process. We note a few recurring failure cases: a)
Extremely simple tiles, b) tiles with multiple objects, c)
Tiles with poor cropping, and d) realistic rendering effects
on tiles. Despite these flaws, a majority of the tiles seem to
be useful, particularly to help to model avoid overfitting to
training tiles.

5. Sampling Analogical Quartet
In the main paper, we introduced analogical quartets
(A,A′, B,B′) that are used to our train analogical editing
model. These quartets are grounded in Structure Mapping
Theory [6], which defines analogies as mappings of rela-
tional structure from a base to a target domain. The rela-
tionship R between program pairs (zA, zA′) and (zB , zB′)
remains consistent:

R(zA, zA′) = R(zB , zB′). (1)

(a) Replace Coloring (SFP)

(b) Replace Layout (MTP)

(c) Add Effect (MTP)

Figure 6. We present examples of editing synthetic patterns A with
different edits to generate edited pattern A′.

Here, we provide additional details on how edits are
defined, sampled, and applied to construct these quartets,
along with examples and a discussion of failure cases.

Edits in our framework operate directly on the attribute
tree AT , rather than on SPLITWEAVE programs. This ap-
proach ensures semantic validity and allows for efficient re-
sampling of components. Each edit targets a node just be-
low the root of the tree, corresponding to high-level com-
ponents in the pattern creation process. For Motif Tiling
Patterns (MTP), the editable components include:

1. Tiles: Add, remove, or replace tiles in the pattern.
2. Layout: Replace the layout structure.
3. Cell Effects: Add or remove specific spatially varying

effects applied to cells.
4. Background and Border: Replace background or bor-

der styles.

For Split-Filling Patterns (SFP), the editable components
include:

1. Foreground Layout and Background Layout: Replace
the layout for either foreground, background or both
elements.

2. Fill Specifications: Replace the specifications for fill-
ing regions.

Edits are applied by resampling or modifying nodes in
the attribute tree. To perform a replace edit, the target node
is resampled to produce a new specification, such as a new
layout or tile configuration, and this new specification is
used to create both A′ and B′. To perform a add edit, a
new node is created and inserted into the appropriate list
(e.g., adding a tile or effect). Finally, to perform a remove

Figure 7. Our model enables users to mix aspects of different pat-
terns to create novel patterns. In this example, The layout of X is
mixed with the tiles of Y to generate the pattern Y ′.

edit, a node is added, and the order of the quartet is flipped
(e.g., swapping A ↔ A′ and B ↔ B′). Applying random
edits to randomly sampled pattern sets (A,B) can gener-
ate invalid new pattern (A′, B′). Therefore, we instead first
sample an edit e and, perform rejection sampling of (A,B)
pairs to generate valid analogical quartets.

In Figure 6, we present some examples of pattern pairs
generated by editing a pattern A to create A′, of both MTP
and SFP styles. Figure 5 provides examples of generated
analogical quartets, demonstrating consistent transforma-
tions between (A,A′) and (B,B′). Despite its robustness,
our approach can encounter failure cases. For instance, de-
spite the pattern programs satisfying equation 1, visually
salient relation between (A,A′) and (B,B′) may not be
analogical. Furthermore, sometimes (A,A′) pair may not
clearly demonstrate the desired change.

6. Additional Details
We now provide additional details regarding our test set
consisting of real-world patterns, and

6.1. Test Set Creation

To evaluate our method, we created a test set by collecting
116 patterns from Adobe Stock. Based on visual inspec-
tion, we annotated desirable edits for 50 patterns in text. For
each annotated edit, we manually constructed input analo-
gies using SPLITWEAVE. These analogies were not always
designed to be simple, as we aimed to test the model’s abil-
ity to interpret non-trivial analogies effectively. The test set,
along with annotated edits, is included in the supplementary
material.

6.2. Application: Pattern Mixing

The goal of pattern mixing is to transfer aspects of one real-
world pattern X to another real-world pattern Y . This ap-
proach makes it easier to create novel variations of patterns
and to transfer specific aspects of patterns that may not be
present in our synthetic dataset. To achieve this, we con-
struct an analogy pair (X,X ′), which is used as input to
edit Y . This sequential process, referred to as “chaining,”

Figure 8. Our model can also be used to create wide canvases of non-stationary patterns by adapting MultiDiffusion [2] for spatially-
conditioned generation. In these examples, we generate patterns of size 1536× 1536 pixels and show a vertically centered crop.

allows edits to build upon the outputs of previous steps.
Our model’s ability to use real-world patterns as analogy

inputs enables chaining, which is critical for pattern mixing.
This capability is attributed to the scale and diversity of the
synthetic dataset used during training. Figure 7 illustrates
this process for a pair (X,Y) where we mix the layout of
X with the tiles of Y .

6.3. Application: Pattern Animation

This application allows users to transfer an animations cre-
ated using simple synthetic pattern A to real-world patterns
B. Traditionally, such transfers require inferring the pro-
gram for B and applying the animation to it. In contrast,
with our method, users can automatically create analogy
pairs from A’s animation sequence to generate correspond-
ing variations in B. The user provides as input (A,A′),
where A′ represents the frames of the animation, and a real-
world pattern B. We then employ TRIFUSER to generate
variations of B that correspond to analogy pairs created for
each frame as follows:

B′ = {B′ = M(A,A′, B)|A′ ∈ A′}. (2)

To ensure temporal consistency, for each frame, we fix
the initial latent noise, generate n = 5 samples and se-
lect the one with the lowest PSNR relative to the preced-
ing frame. This approach avoids program inference and en-
ables automated animation transfer. A demonstration video
is provided in the supplementary material. In future, we
hope to enforce stronger priors to improve temporal consis-
tency.

6.4. Application: Wide Non-stationary Canvas

Visual patterns often need to adapt to varying resolutions,
such as for use in presentations or posters. This is com-
monly achieved for stationary patterns by making the pat-
tern image seamlessly tile-able. In fact, images generated
using convolution-based diffusion models can also be made

Analogy DSIM DISTS LPIPS SSIM
data (↓) (↓) (↓) (↑)

LatentMod
CATEGORICAL

� 0.242 0.320 0.613 0.502

LatentMod
TOKENWISE

� 0.307 0.333 0.581 0.500

LatentMod
ANALOGICAL

� 0.273 0.330 0.620 0.525

Table 1. We compare different variations of LatentMod baselines.
We observe that none of the variations are suitable for performing
precise programmatic edits, indicating the unsuitability of latent-
arithmetic based analogical editing for precise structure editing.

seamlessly tile-able by employing circular padding in the
convolution layers. However, no such solution exists for
non-stationary patterns. We provide a novel solution by
adapting Multi-Diffusion [2] to our settings.

Multi-Diffusion solves the task of generating large im-
ages with diffusion models. This is achieved by first gen-
erating model predictions on tiled crops of the canvas and
using the average predicted noise across overlapping image
crops at each denoising step. Applying this naively to our
method fails as our model strongly depend on the condition-
ing input (A,A∗, B) for generating B′, i.e, they have strong
dependence on the spatial orientation of the conditioning
embeddings. To circumvent this issue, we adapt multi-
diffusion for our model by performing consistent cropping
across analogy inputs (A,A∗, B) and the latent code of B∗

during generation. This adaptation enables the generation
of wide, non-stationary canvases. Figure 8 illustrates three
examples generated using this method, where we generated
wide canvases which are 1536× 1536 pixels in size.

Figure 9. We compare our method, TRIFUSER, against the three baselines with four different metrics. The x-axis of each plot corresponds
to the number of samples used for evaluation, demonstration that TRIFUSER remains superior to the baselines across sample count.

Figure 10. We compare our model against the baselines on a per-
edit type basis. We observe that our model obtains higher percep-
tual similarity to the ground truth target across the edit types.

7. Quantitative Results

We now describe additional experiments conducted to fur-
ther validate our system. First, we discuss quantitative eval-
uations in this section, followed by qualitative results in sec-
tion 8.

7.1. LatentMod Ablation

An important baseline we considered is LatentMod, where
first we train a model to learn a latent space for represent-
ing patterns, followed by deploying latent- arithmetic [13]
to create analogical patterns. Specifically, we first train a
Image Variation Latent Diffusion Model (LDM) on our pat-
tern dataset (i.e. condition on tokens extracted from a pat-

tern image to denoise the same pattern image). Then, dur-
ing test-time, given patterns (A,A′, B) we infer the ana-
logically edited pattern B′ by using the LDM to denoise a
Gaussian-initialized latent conditioned on the latent arith-
metic tokens (E(B) + E(A′) − E(A)). In this section we
explore different variations of this model, demonstrating the
superiority of the baseline used in the main paper over its al-
ternatives.

First, we consider two architectures for the Image vari-
ation model. The first, referred to as CATEGORICAL, uses
only a single pooled token (i.e. a 1 × 768 size embedding)
as the conditioning input E(A). The second, referred to as
TOKENWISE, uses all the 257 image tokens generated by
the token extracted (i.e. a 257× 768 size embedding) as the
conditioning input E(A). Finally, we also consider an alter-
native of CATEGORICAL, as introduced in DeepVisualAnal-
ogy [11]. This variation, referred to as ANALOGICAL, has
the same architecture as CATEGORICAL, but has an alter-
nate loss formulation which resembles the test-time usage.
Essentially, this model is trained to denoise B′ while being
conditioned on E(B)+E(A′)−E(A) explicitly. Note that
CATEGORICAL and TOKENWISE only require a dataset of
training patterns, whereas ANALOGICAL requires analogi-
cal quartets (A,A′, B,B′) during training as well (similar
to conditional generative approaches like ImageBrush [12]
and our approach, TRIFUSER).

Table 1 compares these approaches on our synthetic
validation set, reporting perceptual metrics—DSim [5],
DIST [4] and LPIPS [17]—along with SSIM to capture
pixel-level structural similarity. We first note that TO-
KENWISE shows worse results than CATEGORICAL. Since
TOKENWISE is conditioned on a large embedding of size
257× 768, the latent embedding fails to aid analogical rea-
soning (i.e. compression is essential for learning a latent
space capable of analogical latent arithmetic). Secondly,
we notice a surprising result that ANALOGICAL, despite be-
ing trained explicitly trained for analogical editing, is infact
slightly weaker than CATEGORICAL. Visual inspection re-
veals that although ANALOGICAL and CATEGORICAL gen-

Figure 11. Training TRIFUSER with more analogical quartet samples improves its performance.

Figure 12. Training TRIFUSER with a larger batch size improves its performance.

erate similar results, CATEGORICAL often tends to retain
more aspects of the input pattern B compared to ANALOGI-
CAL, which consequently sometimes results in a higher per-
ceptual similarity to the target B′.

Finally, we remark that all these variations remain sig-
nificantly weaker than the conditional analogical editors.
This indicates that Latent Arithmetic is perhaps not suit-
able for precise editing as there is a inherent tussle between
(a) representing sufficient details of patterns in the latent
space to recreate them with high fidelity and (b) having suf-
ficient compression of the latent space to achieve analogical
reasoning via latent arithmetic. Consequently, most image-
editing methods in the diffusion-era have turned towards al-
ternate strategies such as manipulation of attention map [1]
and latent noise inversion [7] for enabling precise editing.

7.2. TRIFUSER Ablations

As described in the main paper, analogies can have multiple
valid interpretations, and even a single interpretation may
yield several visually-related variations. To account for this
multiplicity, we generate k output patterns for each input set
(A,A′, B) and select the one that maximizes each metric.
We first elucidate the relation between the number of gen-
erated sample k and the different metrics in Figure 9. We
show four plots, one for each metric. Each plot has the num-
ber of samples k as the x-axis, and the metric (e.g. LPIPS,
SSIM) on the y-axis. These plots reveal that for percep-

tual similarity metrics, TRIFUSER triumphs over the base-
lines across all values of k. Furthermore, as we increase k,
TRIFUSER significantly closes the gap between itself and
Inpainter when measuring SSIM. More importantly, these
plot reveal that using a smaller number of samples (k = 5
as used in the main paper) is sufficient, and performance
does not drastically decrease as k is decreased from 16.

We also evaluate all the models separately for each type
of edit in the synthetic validation set. We measure the aver-
age (1− LPIPS with k = 5) (so that higher value indicates
better performance) for each type of edit and visualize the
results a radar plot as show in Figure 10. We observe that
TRIFUSER surpasses all the baselines across the different
types of edits. For more details regarding the edits, please
refer to section 5.

7.3. TRIFUSER Scalability

Recent research has shown that scaling neural approaches,
in terms of computational complexity and dataset size,
is fundamental for achieving compelling results. Conse-
quently, it is critical to investigate the scalability of novel
models/methods. In this section, we study the scalability of
TRIFUSER with respect to its training dataset size and its
training compute budget.

First, we perform ablations to elicit the relation between
training dataset size and TRIFUSER performance. We train
three variations of TRIFUSER each with a dataset size of

Figure 13. We show an example of a complex synthetic pattern B which has a SPLITWEAVE program zB with 31 nodes. Inferring
such programs automatically, i.e. VPI, is infeasible. Our approach, in contrast, allows to use to construct simple program zA, and create
analogical patterns (A,A′) to parametrically edit B, without inferring zB . The task of constructing zA is significantly easier (in this
example, zA contains 8 nodes, only ∼ 25% of zB’s size).

100, 000 samples, 500, 000 samples and 1 Million samples
respectively. The performance of these three methods is
then compared on the held-out synthetic validation set. The
resulting metrics are visualized as line-plots in Figure 11.
Here, we provide 4 plots, one for each metric, similar to the
format in Figure 9. The x-axis corresponds to the number
of samples (k), and the y-axis corresponds to the respec-
tive metrics. We notice a meaningful increase in the perfor-
mance across the different metrics, as we increase the scale
of the training dataset. This indicates training the method
in future with larger datasets containing even more pattern
styles may result in further improvements.

Similarly, we study the effect of training compute budget
on model performance. All our models are typically trained
on 8 A100-40GB GPUs with a batch size of 224. To ex-
plore the relation between training budget and model perfor-
mance, we train a variation of TRIFUSER on 8 A100-80GB
GPUs with a batch size of 448. We report a comparison
between these two models in Figure 12. As shown in this
figure, increasing the batch-size results in further improve-
ments to the model, indicating a positive correlation w.r.t.
the training budget. In future, training TRIFUSER with a
larger training budgets may lead to further improvements in
the model’s performance.

Preference Rate

TRIFUSER vs. Analogist 92.09%
TRIFUSER vs. LatentMod 82.42%
TRIFUSER vs. Inpainter 66.66%

Table 2. Results of a two-alternative forced-choice percep-
tual study comparing single random sample from our model
(TRIFUSER) against three baselines.

7.4. Additional Human Preference study

In the main paper, we employed a best- of- k selection
strategy (choosing the best of k=9 generated outputs per
method) to reflect real-world usage, where users generate
multiple variations and select the most suitable one. This
approach magnifies improvements, but it aligns with the in-
tended use case of these models: their utility lies in whether
at least one output meets user intent. Evaluating perfor-
mance based on a single random sample would not accu-
rately reflect practical deployment. However, manual selec-
tion does introduces potential bias.

To assess its effect, we conducted an additional user
study where participants compared single random outputs
from each method (k=1). This study involved 12 partici-
pants, and the results, shown in Table ??. Despite the re-

Figure 14. TRIFUSER generates multiple equally- valid yet different edited images B′.

moval of best-of-k selection, our model continues to out-
perform baselines, demonstrating that its improvements are
not an artifact of selection bias but reflect genuine user pref-
erence. While Inpainter achieves the closest preference to
our method, it operates at quarter resolution, significantly
limiting its practical applicability.

8. Qualitative Results
We now present qualitative results to emphasize the utility
and impressive capabilities of our method. As discussed
earlier, a primary motivator for our approach is that Visual
Program Inference attempts to infer the a program that fully
replicates the input pattern, which not only is a hard task,
but also results in a tedious editing experience as the user of-
ten has to fiddle with various parameters to ascertain which
parts of the program must be edited to attain the desired edit.
In contrast, with our approach, the user only has to construct
the program for (A,A′) which demonstrate which property
to edit and how to edit it. Particularly, A does not need to
even be similar to B, making the task of constructing the
programs (zA, zA′) considerably simpler.

In Figure 13, we compare the program of a complex tar-
get pattern B, marked as zB , with the simple program, zA
constructed to create a analogy pair (A,A′) for editing the
layout of B. While zB contains 31 operator nodes, zA con-
tains only 8, which is ∼ 25% of the size of zB . We make
the following notes: (a) The task users need to perform —
that of creating zA — is significantly easier than the task

Op-Art Oriental TilingGeometric Design

Figure 15. We present additional examples that show that TRI-
FUSER effectively edits patterns from novel pattern styles not
present in the training dataset.

of inferring zB , (b) Using the analogical editor inducing
parametric control over pattern B based on the program zA.
Consequently, to perform simple edits of pattern B, the user
only needs to specify a simple program zA.

As mentioned previously, analogies can have multiple
valid interpretations, and even a single interpretation may
yield several visually-related variations. Consequently, a

Figure 16. Qualitative comparison of patterns generated by the proposed TRIFUSER architecture and its ablated variants. Removing
positional encoding leads to a drastic drop in performance, as the model struggles to comprehend analogies without explicit spatial cues.
Similarly, omitting lower-layer features or self-supervised features (from DINOv2 [9]) noticeably degrades output quality.

analogical editor must also be capable of producing mul-
tiple interpretations for any given input analogy pairs. Hav-
ing such a one-to-many mapping, as our model has, is more
suitable for editing as the user can select the edited pattern
that matches their edit intent from multiple generations. In
contrast, restricting to a singular interpretation may more
easily lead to scenarios where the system’s and user’s inter-
pretation of the input analogy differ.

In Figure 14, we present analogical edits performed on
real-world patterns by our method, highlighting the genera-
tion of different equally valid analogy interpretations. The
first row corresponds to an edit for removing a random col-
oring variation effect on the input pattern B. TRIFUSER
produces two outcomes, both reasonable as pattern B does
not make it clear what the tile’s original color is. The ex-
ample presented in the second row corresponds to an edit
to modify the background of the input pattern. However, its
unclear if the muted ellipses behind the lion tiles are part
of the tile, or part of the background. Consequently, some
generations keep these ellipses updating their color accord-
ingly, while other generations eschew them to provide a uni-

form colored background as shown in A′. Finally, the third
example corresponds to an edit on the layout of the input
pattern. We show two equally reasonable outputs generated
by our model as the underlying orientation of the bone tile
is ambiguous.

Finally, in figure 15, we provide additional examples of
our model reasonably editing patterns in styles unseen dur-
ing training. Additionally, we present additional qualita-
tive results comparing our method to the other baselines in
Figure 18, and to TRIFUSER architecture ablations in Fig-
ure 16. Note that images comparing the four approaches
across the entire test set are also provided in the supple-
mental material.

9. Failure Cases

We present and discuss some recurring failure cases for our
method. Figure 17 provides 6 examples from our test set
of real-world patterns where our method fails to generate
a reasonable analogical edit. When editing the layout of
patterns, our model still sometimes struggles to retain the

Add Coloring Effect
(a)

Layout Change
(b)

Add Coloring Effect
(c)

Remove Scale Effect
(e)

Layout Change
(d)

Remove Rotation Effect
(f)

Figure 17. We present examples on the test-set where our method fails to produce a reasonable edit. Edits sometimes fail due to poor
retention of tile-details ((b) and (d)), imperfectly applying the edit demonstrated with (A,A′) ((c) and (e)) or failing to understand the
input analogy ((a) and (f)).

fine-details of the input pattern’s tile, particularly when they
contain text — this is demonstrated in example (b) and (d).
Another mode of failure is when the edit does not fully per-
form the intended edit, as visible in example (c) and (e). In
(c) though the model adds a color change effect on B as
intended, it produces color variations that do not match the
color variations shown in (A,A′). This is due to the usage
of relative color shifts (with respect to a hue-wheel) in our
synthetic patterns. Similarly, in (e), while the model cor-
rectly removes the tile scaling effect, it replaces the fish tile
with the cat tile. Finally, a few failure cases also emerge due
to the model failing to understand the input analogy pair, as
show in examples (a) and (f).

10. Limitations

While our method demonstrates robust performance and
versatility, there are a few limitations that merit discussion.

The primary limitation lies in the reliance on a syn-
thetic dataset of analogies. To extend this technique to
other domains, users must construct a domain-specific lan-
guage (DSL) and define editing functions. Furthermore,
real-world applicability of our method depends on the cov-
erage of the DSL and the editing functions. Although we
demonstrate generalization to related pattern styles, the cur-
rent scale of the dataset limits the model’s ability to handle
entirely novel pattern styles or edits. However, this limita-
tion may be addressed by automatic construction of analog-
ical data from multiple domains such as ShaderToy which
contains glsl programs for creating patterns, and p5.js which

contains javascript-like code for creative computing. Such a
dataset could enable pretraining on a broader variety of ana-
logical variations before fine-tuning for specific domains.
Additionally, various visual domains such as Zentangle pat-
terns, materials, Lego already contain well defined DSLs
making it easier to extend our framework to other structured
visual data domains.

A second drawback is that analogies, while universal in
their ability to represent arbitaray edits, are not always the
most efficient modality for conveying edit intent. For exam-
ple, simple edits such as color changes might be more eas-
ily performed through direct recoloring of the canvas. Fur-
thermore, the inherent flexibility of analogies, which allows
multiple interpretations, can sometimes make it tedious to
sample and select a desired output. This issue could be
mitigated by coupling analogies with text-based guidance
or other constraints to make the process more directed and
user-friendly.

Finally, using the system requires constructing anal-
ogy pairs, which depends on the user’s familiarity with
SPLITWEAVE and node-based programming. While this
could pose a barrier to some users, the increasing adop-
tion of node-based tools in visual programming provides
a promising path forward. Future research into improving
user interaction for visual programming and analogical edit-
ing could further lower this barrier and make the system
more accessible.

Despite these limitations, our work provides a flexible
framework for analogical pattern editing and highlights sev-
eral avenues for future research, including extending ana-

logical datasets, improving edit specificity, and enhancing
user interfaces.

11. Frequently Asked Questions (FAQ)
During the review process, several insightful questions were
raised about our approach. We present them here, as they
may be of interest to other readers as well.
Why not use Inpainter at higher resolution? TRIFUSER
’s primary advantage over Inpainter is resolution, which is
a fundamental limitation rather than a minor detail. Higher-
resolution inputs enable more precise analogical edits and
better retention of unmodified features in B. While In-
painter could be trained at higher resolution, doing so typi-
cally requires a cascaded multi-step training process, which
is computationally expensive. Given similar resources,
TRIFUSER could also be trained at higher resolution, main-
taining its advantage. Furthermore, Inpainter inefficiently
utilizes compute, denoising every pixel but retaining only a
quarter-resolution output.
How can pattern analogies be made in practice? Anal-
ogy pairs can be sourced from design repositories, itera-
tive design workflows (e.g., variations created during the
design process), editable vector patterns, or manual cura-
tion. Additionally, users can generate them with simple
SPLITWEAVE programs to illustrate the desired edit (cf.
Figure 13).
Why condition on analogies instead of edit operators?
Conditioning on analogy images, rather than edit opera-
tors, allows the model to leverage (A,A′) from real-world
patterns. As shown in Figure 7, this enables edits beyond
SPLITWEAVE ’s domain, such as applying X’s spatial par-
titioning to Y.
Why not have a Visual Program Inference baseline?
We do not compare against VPI methods because inferring
semi-parametric pattern programs remains a challenge. Our
programs blend rule-based layouts with non-parametric,
highly detailed tiles, making joint inference infeasible for
current VPI techniques. Even with VPI, users would
still need to manually refine a poorly structured inferred
program—precisely the issue our method avoids through
analogy-based editing. Moreover, VPI is inherently limited
to edits expressible in SPLITWEAVE, restricting its flexi-
bility. A fair comparison would require a user study on
analogy-based vs. manual VPI-based editing, which we
leave for future work.

Real-World
Pattern

TriFuser
(ours) Inpainter LatentMod AnalogistEditing Analogy

Figure 18. Qualitative comparison between patterns generated by our model, TRIFUSER, and the baselines. TRIFUSER generates higher
quality patterns with greater fidelity to the input analogy.

References
[1] Yuval Alaluf, Daniel Garibi, Or Patashnik, Hadar Averbuch-

Elor, and Daniel Cohen-Or. Cross-image attention for zero-
shot appearance transfer. In ACM SIGGRAPH 2024 Con-
ference Papers, New York, NY, USA, 2024. Association for
Computing Machinery. 9

[2] Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel.
Multidiffusion: Fusing diffusion paths for controlled image
generation. arXiv preprint arXiv:2302.08113, 2023. 7

[3] Rete.js Contributors. Rete.js: Javascript framework for vi-
sual programming, 2023. Version 1.x, accessed November
20, 2024. 3

[4] Keyan Ding, Kede Ma, Shiqi Wang, and Eero P. Simoncelli.
Image quality assessment: Unifying structure and texture
similarity. CoRR, abs/2004.07728, 2020. 8

[5] Stephanie Fu, Netanel Tamir, Shobhita Sundaram, Lucy
Chai, Richard Zhang, Tali Dekel, and Phillip Isola. Dream-
sim: Learning new dimensions of human visual similarity
using synthetic data. Advances in Neural Information Pro-
cessing Systems, 36, 2024. 8

[6] Dedre Gentner. Structure-mapping: A theoretical framework
for analogy. Cognitive Science, 7(2):155–170, 1983. 5

[7] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman,
Yael Pritch, and Daniel Cohen-Or. Prompt-to-prompt image
editing with cross attention control. 2022. 9

[8] George A. Miller. WordNet: A lexical database for En-
glish. In Human Language Technology: Proceedings of a
Workshop held at Plainsboro, New Jersey, March 8-11, 1994,
1994. 5

[9] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V.
Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mido
Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes,
Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rab-
bat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jégou,
Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bo-
janowski. Dinov2: Learning robust visual features without
supervision. Trans. Mach. Learn. Res., 2024, 2024. 12

[10] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. PyTorch: an imper-
ative style, high-performance deep learning library. Curran
Associates Inc., Red Hook, NY, USA, 2019. 3

[11] Scott Reed, Yi Zhang, Yuting Zhang, and Honglak Lee. Deep
visual analogy-making. In Proceedings of the 28th Inter-
national Conference on Neural Information Processing Sys-
tems - Volume 1, page 1252–1260, Cambridge, MA, USA,
2015. MIT Press. 8

[12] Yasheng Sun, Yifan Yang, Houwen Peng, Yifei Shen, Yuqing
Yang, Han Hu, Lili Qiu, and Hideki Koike. Imagebrush:
learning visual in-context instructions for exemplar-based
image manipulation. In Proceedings of the 37th Interna-
tional Conference on Neural Information Processing Sys-
tems, Red Hook, NY, USA, 2024. Curran Associates Inc. 8

[13] Yoad Tewel, Yoav Shalev, Idan Schwartz, and Lior Wolf.
Zero-shot image-to-text generation for visual-semantic arith-
metic. arXiv preprint arXiv:2111.14447, 2021. 8

[14] Gregory K. Wallace. The jpeg still picture compression stan-
dard. Commun. ACM, 34(4):30–44, 1991. 5

[15] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and
Lucas Beyer. Sigmoid loss for language image pre-training.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 11975–11986, 2023. 5

[16] Lvmin Zhang and Maneesh Agrawala. Transparent im-
age layer diffusion using latent transparency. ACM Trans.
Graph., 43(4), 2024. 4, 5

[17] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 8

	. Introduction
	. Video Results
	. A language for visual patterns
	. UVExpr and SExpr

	. Frequently Asked Questions (FAQ)

