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Supplementary Material

In the supplementary material, we begin with implemen-
tation details in Sec. 7. Sec. 7.1 discusses the experimental
setup, including the hardware information and environment
specifications. In Sec. 7.2 we discuss the nuances of the
SPCS smoothing method and the details pertaining to its
implementation for our purposes. We analyze the influence
of cluster size on the feature space clustering and how well
it aligns with the gene expressions in Sec. 7.3. Sec. 7.4 dis-
cusses the implementation details of our six baselines and
also analyzes the performance gap in case of one of them.
In the second section (Sec. 8), we further analyze the re-
sults of our experiments and present visualizations to that
effect. Sec. 8.1 presents a comparison of the PCC scores
obtained by MERGE and TRIPLEX [1] across the ST-Net
dataset, while Sec. 8.2 presents visualizations for ablation
of the graph construction strategy and its various modules.

7. Implementation Details
7.1. Experimental Setup

The ResNet18-based patch encoder is implemented in Py-
Torch (version 2.2.2). The graph neural network is im-
plemented using PyTorch Geometric (version 2.5.2). Both
models are trained on a NVIDIA RTX A6000 GPU. To en-
sure reproducibility a constant seed (3927) is set across all
implementations and reruns of the model. The training of
the ResNet18 is performed over 15 epochs, while the GNN
is trained over 400 epochs. Each training process is repli-
cated for five times and the best model is picked for each
experiment.

7.2. Smoothing

We already established the effectiveness of SPCS [5]
smoothing over the spatial smoothing employed in prior
studies [1, 2]. This section presents further details on the
implementation of the SPCS smoothing employed on the
ST-Net dataset. The source code for SPCS is obtained from
the GitHub repository provided in the original publication.
The R-package is compiled and run in a Python kernel.
The raw UMI counts and tissue position coordinates for the
spots must first be converted to the appropriate data format
to be processed by the SPCS code. In the original SPCS im-
plementation, a quality check is performed across the gene
library to filter out low-quality genes using a threshold for
the percentage of spots in which a gene is expressed as well
as the variance of the gene expressions. Typically the zero
cutoff parameter is set to 0.7, meaning that genes that are
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Figure 8. This presents a bar chart of the sample-by-sample drop-
ping of genes based on amount of zero expression in the ST-Net
dataset. The average number of genes dropped per sample is 5.72.
We skip this step and use the 250-gene subset from the original
study [2])

Parameter Value
Gene Zero Cutoff N/A
Gene Variance Cutoff | N/A
Ts 2
Tp 16
alpha 0.6
beta 04
Filling threshold 0.5
is.hexa False
is.padding False

Table 5. Parameters for running SPCS on the ST-Net dataset.

zero in over 70% of the spots are discarded, while the rest
are retained. Running this gene filtering step on all samples
of the ST-Net dataset reveals that the vast majority of slides
retain most of the genes (see Fig. 8). The average number
of genes dropped per sample is 5.72. We skip this quality
check step for all three datasets, and perform SPCS 250-
gene subsets used in the TRIPLEX paper. These genes are
listed in Fig. 9, Fig. 10, Fig. 11. The values for the other
parameters in the SPCS method are outlined in Tab. 5.

7.3. Cluster Size

Spatial Clustering. The cluster size impacts the two clus-
tering approaches in different ways. For the spatial cluster-
ing, using very small cluster sizes will mean that a smaller
number of adjacent spots will be grouped together. This will
result in the graph trying to model smaller tissue segments.
This can have varying effects depending on the sample. If



250-gene subset for the ST-Net dataset,

RPS3, IGLL5, RPLP1, TFF3, RPS18, GAPDH, TMSB10, RPLP2, RPS14, RPL37A, RPS19, RPL28, KRT19,
RPL8, RPL13, RPL19, ACTB, RPL36, RPL18A, RPL35, RPL18, RPS2, RPS12, RPS21, RACK1, RPL13A,
CTSD, FTL, PFN1, MGP, RPS15, RPS11, RPS16, HLA-B, UBA52, NHERF1, RPS17, PSAP, RPLPO, SERF2,
RPS27, RPS8, RPL27A, MUC1, RPS28, H2AJ, RPL10, CALR, RPS29, RPL38, RPL11, P4HB, RPS6, CST3,
FTH1, RPS4X, SSR4, RPL30, ERBB2, APOE, AZGP1, RPL3, COX6C, HLA-C, FAU, RPS9, EEF2, B2M, RPS5,
RPL12, ACTG1, RPS27A, RPL37, RPL23, HLA-A, RPL31, RPL29, RPL7A, IFI27, PABPC1, CD74, BEST1,
RPL32, FASN, S100A9, GPX4, RPL15, RPL27, MZT2B, RPL23A, HSPB1, MALAT1, RPS24, COL1A1, C4B,
KRT18, CFL1, CD81, ALDOA, RPL35A, SYNGR2, PPP1CA, HLA-E, TAGLN, RPL9, CD63, RPS3A,
LGALS3BP, IGFBP2, BST2, TPT1, EDF1, RPS25, ATP6VOB, TAPBP, GRINA, XBP1, S100A11, NBEALT,
AEBP1, CCND1, OAZ1, RPL14, TAGLN2, FN1, PPDPF, BCAP31, IFITM3, PRDX1, BGN, GNAS, PTMA, UBC,
MZT2A, SLC25A6, RPS20, HSP90AB1, RPS10, MYL6, CLDN3, ATP6AP1, PRDX2, RPL24, GNB2, RPL34,
RPL4, LMNA, NDUFA13, HLA-DRA, SNHG25, TIMP1, H1-10, RPS23, COX8A, KRT8, LYSE, ENO1, GRN,
PTPRF, RPL7, UBB, BSG, ELOB, COX6B1, TMSB4X, C1QA, PRSS8, RPL5, UQCR11, RPS7, A2M, RPS15A,
VIM, S100A6, NDUFA11, PSMD3, EVL, APOC1, H3-3B, ATP5F1E, PLXNB2, MYL9, TUBA1B, CTSB, ISG15,
FLNA, RPS13, NDUFB9, EIF4A1, POLR2L, CYBA, CRIP2, EEF1D, ATP1A1, ELF3, TUFM, SH3BGRL3,
STARD10, C3, GUK1, ZNF90, C120rf57, TLE5, SEC61A1, SDC1, PLD3, SPDEF, ARHGDIA, IFI6, LAPTMS,
RPL41, CLU, GNAI2, PFDN5, RPL39, SSR2, COX4l1, RHOC, JUP, EIF4G1, FXYD3, TSPO, UQCRQ,
COL1A2, RPL10A, S100A8, SELENOW, TPI1, ATP5MC2, PTMS, IGFBP5, LGALS1, SPINT2, RPSA, GSTP1,
CHCHD2, EIF5A, COX5B, ATG10, RPL6, EEF1A1, CAPNS1, LMAN2, UBE2M, SPARC, EIF3C, GAS5, TUBB,
ACTN4, IGFBP4,

Figure 9. List of the 250 genes used in all experiments on the ST-Net dataset.

250-gene subset for the Her2ST dataset,

IGKC, TMSB10, ERBB2, IGHG3, IGLC2, IGHA1, GAPDH, ACTB, IGLC3, IGHM, SERF2, PSMB3, PFN1,
ACTG1, KRT19, RACK1, MUCL1, CISD3, APOE, MIEN1, SSR4, CALR, PSAP, CTSD, FTL, FTH1, TPT1,
PTPRF, UBA52, P4HB, BEST1, HLA-B, FAU, SLC9A3R1, FN1, COL1A1, EEF2, IGHG4, CALML5, CD74, B2M,
FASN, S100A9, MGP, CFL1, PSMD3, IGHG1, HLA-A, S100A6, MYL6, COL1A2, PHB, TAGLN2, HLA-E, HLA-C,
KRT7, CD63, SYNGR2, STARD3, PABPC1, GPX4, GRB7, SLC25A6, AEBP1, GNAS, NDUFB9, EDF1, CRIP2,
DDX5, OAZ1, EIF4G1, LMNA, GNB2, CST3, PCGF2, SDC1, S100A11, PRDX1, GRINA, ATP6VOB, TFF3,
HLA-DRA, EEF1D, AZGP1, PPP1CA, FLNA, COL3A1, ATP5E, SPDEF, AP000769.1, ALDOA, PLXNB2,
TAGLN, TUBA1B, APOC1, PRRC2A, LAPTMS5, PTMS, KRT18, IFI27, PLD3, ADAM15, C1QA, AES, TSPO,
MLLT6, TAPBP, SCAND1, ATP1A1, CD81, SEC61A1, CLDN3, PPDPF, S100A14, BGN, C3, MZT2B, S100AS8,
MDK, PFDN5, H2AFJ, SH3BGRL3, ENO1, XBP1, CYBA, COX6B1, TRAF4, CD24, PRSS8, MMP14, MUC1,
VIM, MIDN, SPINT2, BST2, TIMP1, GUK1, ACTN4, CTSB, COX4l1, CCT3, HNRNPA2B1, SEPW1, LY6E, SCD,
HSPB1, EIF4G2, BSG, ZYX, TUBB, LASP1, CD99, COL6A2, H1FX, RALY, UBE2M, SPARC, ATG10,
HSP90AB1, ORMDL3, LMAN2, CHCHD2, COX7C, ARHGDIA, VMP1, UBC, IGFBP2, COPE, NUPR1, PERP,
KRT81, PPP1R1B, LGALS3BP, SSR2, KIAA0100, MYL9, CIB1, IDH2, STARD10, LGALS1, COX6C, GRN,
MAPKAPK2, GNAI2, KDELR1, COL18A1, UQCRQ, COX5B, ELOVL1, CHPF, CLDN4, C120rf57, LGALS3,
HSP90AA1, JUP, A2M, NDUFB7, PGAP3, HSPA8, TCEB2, PEBP1, COPS9, ATP5G2, ATPSAP1, MYH9, LSM4,
COX8A, UQCR11, ATP5B, DHCR24, PTBP1, EIF3B, NDUFA3, FKBP2, MMACHC, RABAC1, ISG15, PTMA,
RRBP1, POSTN, C1QB, BCAP31, PSMB4, LAPTM4A, INTS1, FNBP1L, JTB, NBL1, HM13, SLC2A4RG,
ROMO1, SERINC2, NDUFA11, RHOC, TXNIP, TYMP, NACA, HSP90B1, SNRPB, PFKL, VCP, ERGIC,
NUCKS1, PSMD8, CALM2, AP2S1, DBI, C4orf48, SDF4, TPI1,

Figure 10. List of the 250 genes used in all experiments on the Her2ST dataset.



250-gene subset for the SCC dataset

S100A8, KRTBA, KRT14, S100A9, KRT5, KRT6B, KRT16, KRT6C, KRT17, MT-CO3, S100A7, MT-CO2, SFN,
S100A2, MT-CO1, ACTB, PERP, SPRR1B, KRT10, KRT1, EEF1A1, RPLP1, LGALS7B, LGALS7, COL1A1,
FABP5, RPS12, HLA-B, MT-ND4, RPLP2, ACTG1, GJB2, B2M, TPT1, RPL13, MT-ATP6, RPS24, PFN1,
KRTDAP, RPS6, DMKN, RPLPO, MT-ND3, RPL37A, DSP, CXCL14, RPS18, RPS17, RPS8, RPL13A, MT-CYB,
RPL11, RPL27A, RPL28, MT-ND1, RPS27, RPL32, CSTA, RPL34, RPL31, COL1A2, RPL8, SBSN, TMSB10,
ENO1, RPS14, RPL36, SPRR2A, RPL39, GSTP1, RPS27A, JUP, RPS19, RPL37, RPL27, RPL3, RPS29,
COL3A1, RPS11, CSTB, RPL9, RACK1, ANXA2, RPL7A, RPL23, RPL19, S100A11, RPS2, RPS28, EEF2,
ANXA1, CD74, PABPC1, LDHA, RPS3, RPL35A, DSC2, AQP3, RPS25, IFI27, CALML5, YWHAZ, RPLS,
TMSB4X, RPS23, RPL12, S100A14, RPS4X, UBA52, SLPI, PKP1, RPL38, HLA-A, RPS13, LY6D, RPL24,
ATP1B3, MYL6, GJB6, S100A6, HSPB1, RPL18, MT-ND2, SDC1, IVL, FTL, RPS3A, RPL10, RPS15A, PI3,
RPL18A, S100A10, RPS7, S100A7A, RPL29, RPL26, RPL41, RPL4, RPL7, SPARC, VIM, PTMA, RPS20,
MMP1, SH3BGRL3, RPL15, MYH9, GJA1, ITM2B, PPIA, RPL14, UBC, RPL5, CD44, AHNAK, RPL21, DSC3,
CNFN, CD24, CFL1, COL17A1, HSP90AA1, RPS16, PKM, NACA, RPS5, ALDOA, H3F3B, S100A16, TAGLN2,
HLA-C, TRIM29, LYPD3, FAU, LMNA, SPINK5, SPRR2E, RPL22, KRT2, CST3, DSG3, CLCA2, RPSA, DSGH,
RPS9, NDRG1, AC090498.1, GRN, TXN, HSPA8, TGFBI, CTSB, SPRR2D, HLA-DRA, ACTN4, RPS21, EIF1,
CTSD, ARPC2, CALML3, KLK7, CALM1, GNAS, DYNLL1, FLG, FLNA, DST, SLC2A1, PSAP, EIF4G2,
EEF1B2, FGFBP1, LGALS1, ITGAB, MYL12B, TPI1, RPL10A, TMEMA45A, BTF3, DSTN, RTN4, HNRNPA2B1,
LAD1, ATP1A1, SERPINB3, PRDX1, COLBA1, ATP5E, PPDPF, TYMP, CD63, EIF5A, YWHAQ, PGK1, HLA-E,
IFITM3, RPS26, IGFBP4, OAZ1, NPM1, LCE3D, FXYD3, MT2A, COL6A2, POLR2L, CD59, HNRNPK, RPL35,

TMBIM6, HSP90AB1

Figure 11. List of the 250 genes used in all experiments on the SCC dataset.

a sample consists of large homogeneous tissue segments,
smaller spatial clusters will not be too helpful in capturing
the interactions of spots within them. But if there are small
homogeneous tissue segments, using smaller clusters will
help the GNN learn from these smaller groups of spots. This
will result in a more accurate modeling of the morphology
driven interactions among spots, and thereby enhance gene
expression prediction.

Feature Space Clustering. In the feature space, the goal
is to group spots based on imaging features. The expec-
tation is that morphologically similar spots will have sim-
ilar imaging features, and therefore, be grouped together.
This extends to the idea that morphologically similar tis-
sue segments are likely to exhibit similar gene expressions.
Therefore, we should expect to see some alignment among
tissue morphology, feature space clusters and the gene ex-
pressions. To visualize this we perform clustering in the
gene space by using the gene expression vectors as the fea-
ture vectors in a clustering scheme similar to feature space
clustering. The genes used for this clustering are - FASN,
GNAS, XBP1, AEBP1, SPARC, and BGN [2]. These are
all known cancer biomarkers. We use the same cluster size
for both. Fig. 12 shows the outputs of feature space cluster-
ing and gene-based clustering for various cluster sizes. We
can see that smaller clusters fail to capture morphologically
meaningful groups well. They also fail to align well with

gene space clusters. But larger cluster sizes result in more
gene-aligned feature space clusters. We can see that there
is still a significant misalignment among the clusters in the
image feature space and the clusters in the gene expression
space. This is why feature space clustering is not sufficient
on its own, and provides better outputs only when combined
with spatial clustering.

7.4. Baselines
7.4.1 ResNet+FCN

The first baseline is composed of our ResNet18 patch en-
coder followed by a fully connected layer (FCN) to pre-
dict the 250 genes per patch. This is the simplest variant of
architecture, which is directly inspired by the original ST-
Net [2] architecture where a DenseNet followed by a fully
connected layer was used for gene expression prediction.

74.2 BLEEP

The source code of BLEEP [7] is obtained from the orig-
inal publication. The same ResNetl8 architecture is used
here as the patch encoders in both MERGE and TRIPLEX.
BLEEP seems to perform rather poorly when trained and
evaluated on the SPCS smoothed data. Our assumption is
that this is caused by the use of Harmony [4] by BLEEP.
Harmony is a batch correction algorithm designed for sin-
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Figure 12. The figure shows the WSI, extracted patches, outputs of feature space clustering, and outputs of gene space clustering using
five cancer biomarkers. Each row represents a different cluster size. It is evident that clusters that are too small fail to represent both the
morphologically similar tissue segments and the gene space clusters. Larger cluster sizes are more effective at capturing both of these, but
still can not accurately align with the gene space clusters. This underlines the necessity of feature space clustering but also depicts why it

is not sufficient by itself.

gle cell RNA-seq data (scRNA-seq). Harmony models and
removes the artifacts generated by known sources of varia-
tion in scRNA-seq data. In applying Harmony to ST data
however, each spot must be treated as a cell and this does
not translate well in all cases. In case of BLEEP, using
Harmony on the raw gene expression data works well with
their original four-sample dataset. However, using it on the
SPCS smoothed ST-Net data interferes with the gene ex-

pression patterns captured by SPCS. We assume that this is
what most likely results in a poor performance on the ST-
Net dataset. The detrimental effect of applying Harmony
on ST-Net data is visualized in Fig. 13 where we can see
that the morphological patterns captured by SPCS for two
cancer biomarker genes - FASN and GNAS - are lost in the
outputs of Harmony.



Figure 13. When we plot the expression values for two cancer
biomarker genes - FASN and GNAS - on the tissue space, we see
that the morphological patterns captured by SPCS are lost upon
applying Harmony. This is most likely the cause of the poor per-
formance of BLEEP on the SPCS smoothed ST-Net dataset.

7.4.3 HisToGene, Hist2ST and THItoGene

The source code of HisToGene [6], Hist2ST [8] and THI-
toGene [3] are adopted from the original publications. We
train and test on SPCS smoothed data for all three base-
lines. All three models perform logCPM normalization on
the gene expression matrix. We remove this portion of the
code before training on SPCS data as we already perform
logCPM normalization during SPCS smoothing. Hist2ST
and THItoGene use 4-nearest-neighbors graphs for their
purposes and we adapt that to the other datasets as well. We
set the global seed for all modules and libraries the same
value as MERGE (3927) for consistency.

7.4.4 TRIPLEX

The source code of TRIPLEX [1] is obtained from the origi-
nal publication as well. This is used to train and test on both
8n and SPCS smoothed data. Since TRIPLEX performs the
spatial smoothing (8n) within the model code, we remove
that portion of code as well as the log normalization step
while training on the SPCS smoothed data. The remaining
parameters are kept unchanged in the original implemen-
tation and the parameter specifications are obtained from
the supplementary materials provided by the authors. The
seed set by TRIPLEX is also updated to match the seed in
MERGE (3927) for consistency.

8. Results Analysis
8.1. Results Comparison - PCC

This section discusses the PCC scores attained by MERGE
and TRIPLEX across the samples in ST-Net dataset for two
cancer-relevant genes - FASN and GNAS. Fig. 14 shows
two bar charts depicting the PCC attained by MERGE and
TRIPLEX for each sample in ST-Net. The legend men-
tions the average PCC over the dataset for each method.
It is evident that MERGE achieves a higher average PCC
for both the FASN (0.39) gene and the GNAS (0.42) gene.
Additionally, we can see that there are plenty of samples
where MERGE achieves a higher PCC for both genes while
TRIPLEX is unable to do so. The reverse however is
rarely true. In case of FASN, MERGE performs better than
TRIPLEX in 39 samples, with an average PCC that is higher
by 0.33. In case of GNAS, in the 41 samples where MERGE
performs better than TRIPLEX, the average PCC achieved
by MERGE is higher that that of TRIPLEX by 0.34. Fig. 15
shows the sample-wise bar charts of the PCC achieved by
both methods for the two genes. For visual convenience,
the vertical red dashed line in each panel splits the chart
into two zones. The zone on the left can be considered a
low PCC zone where a method has achieved a low PCC,
less than 0.25 for FASN and less than 0.265 for GNAS. We
can see that the number of samples for this region of the
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Figure 14. The PCC between the ground truth and predicted gene expressions for the tumor marker FNAS gene and breast cancer biomarker
GNAS gene. The average PCC across the dataset is reported inside the legend within parentheses.

graph is significantly lower for MERGE (blue bars), which
means that MERGE exhibits much fewer low PCC samples.

8.2. Ablation Visualization

Using the same ResNet18 based encoder and progressively
adding the three modules of our graph construction strat-
egy, we can see a comparative performance of the mod-
ules across multiple samples. When we plot the WSI and
the ground truth gene expressions alongside the predicted
expressions using one-hop edges, feature space clustering-
based edges, spatial clustering-based edges, and the com-
bined strategy (MERGE) - we can see that the Pearson Cor-
relation Coefficient of predicted and ground truth gene ex-
pressions improves progressively. Fig. 16 and Fig. 17 visu-
alize this comparison across multiple samples for the tumor
marker FNAS gene. Similarly, Fig. 18 and Fig. 19 visual-
ize this comparison across multiple samples for the breast
cancer biomarker GNAS gene. For most samples, the PCC
achieved using only feature space or spatial clustering is
better than that achieved using only one-hop edges. The
PCC is highest when using a combination of both cluster-
ing methods alongside the one-hop edges.
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Figure 15. This is a histogram of PCC for the two methods for the ST-Net dataset. The upper panel shows the histogram for the FASN
gene, while the lower panel shows the same for the GNAS gene. We can see that MERGE attains low PCC for significantly fewer samples.
Additionally, there are very few samples where both methods perform poorly and attain negative PCC for either gene, although this number
is slightly higher for MERGE.



WSI Ground Truth One-hop (0.52) Features (0.56) Spatial (0.65) MERGE (0.75)

One-hop (0.32) Features (0.39) Spatial (0.44) MERGE (0.48)

Ground Truth One-hop (0.01) Features (0.08) Spatial (0.28)

et

MERGE (0.55)

i i

One-hop (-0.11) Features (0.51) Spatial (0.44)

One-hop (0.08) Features (0.16) Spatial (0.50) MERGE (0.53)

Ground Truth One-hop (0.53) Features (0.66) Spatial (0.64)

One-hop (0.41) Features (0.42) MERGE (0.52)

Features (0.39) MERGE (0.62)

One-hop (0.08) Spatial (0.56)

Features (0.24) Spatial (0.57) MERGE (0.63)

Figure 16. Figure shows PCC between ground truth expressions and predictions for the gene FASN in a few samples. Each row represents
a sample, and from the left we have the WSI, the ground truth expressions, predicted expressions using one-hop edges, feature space
clustering based edges, spatial clustering based edges and both clustering methods (MERGE).



wsi Ground Truth One-hop (0.23) Features (0.33) Spatial (0.39) MERGE (0.43)

Ground Truth One-hop (0.50) Features (0.51) Spatial (0.65)

WsI Ground Truth One-hop (0.04) Features (0.41) Spatial (0.43) MERGE (0.47)

One-hop (0.08) Features (0.64) Spatial (0.70) MERGE (0.73)

. ..
Spatial (0.56)

One-hop (-0.04) Features (0.51) MERGE (0.62)

Ground Truth One-hop (0.46) Features (0.45) Spatial (0.54) MERGE (0.63)

X

Ground Truth One-hop (0.40) Features (0.41) Spatial (0.52) MERGE (0.58)

wsi Ground Truth One-hop (0.44) Features (0.72) Spatial (0.75) MERGE (0.80)

Ground Truth One-hop (0.17) Features (0.36) Spatial (0.32) MERGE (0.43)

Figure 17. Extension of Fig. 16




Features (0.53) Spatial (0.61) MERGE (0.66)

Ground Truth

One-hop (0.41)

MERGE (0.48)
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wsi Ground Truth One-hop (0.08) Features (0.55) Spatial (0.54)

Features (0.74)

Ground Truth One-hop (0.43) Features (0.54) Spatial (0.56) MERGE (0.63)

4 " . i i
Features (0.60) Spatial (0.67) MERGE (0.68)

Ground Truth One-hop (0.41) Features (0.55) Spatial (0.55) MERGE (0.60)

Figure 18. Figure shows PCC between ground truth expressions and predictions for the gene GNAS in a few samples. Each row represents
a sample, and from the left we have the WSI, the ground truth expressions, predicted expressions using one-hop edges, feature space
clustering based edges, spatial clustering based edges and both clustering methods (MERGE).




Ground Truth One-hop (0.60) Features (0.66) Spatial (0.67) MERGE (0.71)

Wsli Ground Truth One-hop (0.04) Features (0.14) Spatial (0.31) MERGE (0.33)

Features (0.44) Spatial (0.51) MERGE (0.52)

Features (0.50) Spatial (0.51) MERGE (0.54)

Features (0.46) Spatial (0.46) MERGE (0.61)

One-hop (0.17) Features (0.74) Spatial (0.76) MERGE (0.77)

MERGE (0.64)

One-hop (0.36) Features (0.60) Spatial (0.52)

wsi Ground Truth One-hop (-0.05) Features (-0.16) Spatial (0.35) MERGE (0.47)

One-hop (0.21) Features (0.60) Spatial (0.53)

MERGE (0.62)

Figure 19. Extension of Fig. 18
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