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1. Hybrid Vision Transformer

Recent advancements in ViT architectures have explored
the integration of convolutional layers, departing from the
original design that relied solely on fully connected layers
for processing. Notably, works like Pyramid Vision Trans-
former (PVT) [14] and FastViT [12] have introduced con-
volutional layers into the ViT model, leading to enhanced
model performance and capabilities. Moreover, according
to Meta-former [15], the outstanding performance of ViT
is attributed more to its architectural characteristics rather
than the introduction of self-attention modules. This find-
ing further reinforces the effectiveness of the hybrid ViT ar-
chitecture. Therefore, when designing model architectures
based on ViT, using different structures as alternatives to the
self-attention module for token mixing in specific scenar-
ios is possible. The computational complexity of the atten-
tion matrix demonstrates quadratic growth concerning the
number of tokens, and the acquisition of a binarized atten-
tion matrix introduces notable computational redundancy.
Therefore, when dealing with a large number of tokens,
replacing the attention module with specialized convolu-
tional structures can reduce computational complexity and
decrease the corresponding number of parameters, which is
an effective solution to address the issue caused by an ex-
cessive number of tokens.

2. The detailed illustration of three observa-
tions

Observation 1. Avoiding excessive numbers of tokens is
beneficial for Binary ViT.

Detailed illustration. For a vector x containing k elements,
[x1, x2, · · · , xk], represents as one row of the attention ma-
trix before softmax, which is the similarity vector between
a token and the rest of the tokens.

As shown in Bibert [10], we assume the x is the m row
of the attention matrix before softmax, and the element of x
can be obtained by the following,

xi =

d∑
l=1

Ba (Q, a1, b1)
m,l ×Ba

(
KT , a2, b2

)l,i
,

Ba (M, a, b) = sign

(
M− b

a

)
,

(1)

where Ba (M, a, b) is the binary process of M. a and b are
scale factor and bias, respectively. l and d are the index and
number of channels of Q and K, respectively.

Let γ = Ba (Q, a1, b1)
m,l×Ba

(
KT , a2, b2

)l,i
, thus γ is

a binary random variable taking 1 or -1, which is subject to
a Bernoulli distribution with the probability of p (when γ =
1). Based on the binary process in Eq. 2, p near 0.5. Then,
the probability of xi, pxi

, can be expressed as a binomial
distribution.

pxi
(xi) = Ct

dp
t (1− p)

d−t (2)

where xi takes the value of 2t − d, referring to Fig. 1.
Following the DeMoivre–Laplace theorem [13], xi can be
well approximated by the normal distribution N

(
µ, σ2

)
when d is large enough, shown in Fig. 2. In our case,
d is no less than 256 (the number of channels), and the
DeMoivre–Laplace theorem can be applicable very well.
As the information entropy of one-dimensional Gaussian
distribution is

HG(x) = −
+∞∫

−∞

pG (x) ln (pG (x)) dx

= −
+∞∫

−∞

1√
2πσ2

e−
(x−µ)2

2σ2 · ln 1√
2πσ2

e−
(x−µ)2

2σ2 dx

= −
+∞∫

−∞

1√
2πσ2

e−
(x−µ)2

2σ2 · (− ln
√
2πσ2 − (x− µ)2

2σ2
)dx

= ln
√
2πσ2 +

+∞∫
−∞

1√
2πσ2

e−
(x−µ)2

2σ2 · (x− µ)2

2σ2
dx

= ln
√
2πσ2 +

1√
π

+∞∫
−∞

e−ρ2

· ρ2dρ

= ln
√
2πσ2 +

1

2

=
1

2
ln (2πeσ2),

(3)

where pG (x) = 1√
2πσ2

e−
(x−µ)2

2σ2 . Assuming the elements
of x are independent and identically distributed, the infor-
mation entropy of x is

HG (x, k) =
k

2
ln

(
2πeσ2

)
. (4)

From Eq. 4, we can find the information entropy of x is pro-
portional to the token number k. Therefore, as the number
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Figure 1. The Schematic diagram of the process of computing xi,
referring to Eq. 2.

of tokens k increases, the information entropy of x would
continuously increase.

The softmax operation transfers vector x to the normal-
ized vector psof , as shown in Eq. 5,

pi
sof =

exi∑k
i=1 e

xi

, (5)

where exi means exponential mapping for xi. pi
sof repre-

sent the probabilities of the corresponding element xi in x.
The entropy of the vector x after softmax is represented

by

Hs(x, k) = −
k∑

i=1

pi
sof ln(p

i
sof )

= −
k∑

i=1

exi∑k
j=1 e

xj

ln (
exi∑k
j=1 e

xj

)

= −
k∑

i=1

exi∑k
j=1 e

xj

xi − ln (

k∑
j=1

exj )


= ln (

k∑
j=1

exj )−
∑k

i=1 e
xi · xi∑k

j=1 e
xj

,

= ln (k × 1

k

k∑
j=1

exj )−
∑k

i=1 e
xi · xi∑k

j=1 e
xj

,

= ln (k) + ln (
1

k

k∑
j=1

exj )−
∑k

i=1 e
xi · xi∑k

j=1 e
xj

,

(6)

where
∑k

i=1 exi ·xi∑k
j=1 exj

is the expectation value of vector x.
1
k

∑k
j=1 e

xj is the expectation of variable exj and exj fol-
lows the log-normal distribution, a continuous probability
distribution of a random variable whose logarithm is nor-
mally distributed [1]. Therefore, we could obtain

Hs(x, k) = ln (k) + ln (
1

k

k∑
j=1

exj )−
∑k

i=1 e
xi · xi∑k

j=1 e
xj

,

= ln (k) + ln (eµ+
σ2

2 )−
∑k

i=1 e
xi · xi∑k

j=1 e
xj

,

(7)

where xj and xi follow the same Gaussian distribution

N
(
µ, σ2

)
. Let µs =

∑k
i=1 exi ·xi∑k
j=1 exj

, and we have

Hs(x, k) = ln (k) + µ+
σ2

2
− µs, (8)

The µs is the weighted sum of xi and the sum of weights is
1. As k increases, there is an upper bound on the value of
µs.

µs =

∑k
i=1 e

xi · xi∑k
j=1 e

xj

<

∑k
i=1 e

xi · d∑k
j=1 e

xj

= d, (9)

where d is the channel number of xi. Combining the Eq. 8
and Eq. 9, the information entropy of x after softmax also
increases with a larger k. Meanwhile, as k increases, we
have

lim
k→∞

pi
sof = lim

k→∞

exi∑k−1
j=1 e

xj + exi

, (i ̸= j)

≈ exi

(k − 1) exi + exi
=

1

k
,

(10)

where the difference between exi and each exj can be ig-
nored when k → ∞.

Therefore, the probability distribution vector of x grad-
ually approximates a uniform distribution with an increas-
ing number of tokens. An illustrative example is shown in
Fig. 3. Three pictures describe different numbers of sam-
ples (20, 200, and 2000) from the same Gaussian distribu-
tion, respectively. From Fig. 3, it is observed that the distri-
bution is gradually approximating uniform with the number
of data increasing. It is well known that a uniform distri-
bution for the attention matrix implies that all tokens are
treated equally, which undermines the effectiveness of the
attention mechanism.

From another perspective, as the number of tokens in-
creases, the scaling factor a of the binary attention matrix
may become too small. This is because Att becomes too
small when the number of tokens is large, and thus a should
be very small to make Att−b

a aligned to the range [0,1].
However, as shown in Eq. 11, a very small scale factor a
reduces the value of the final binarization result during for-
ward propagation and results in gradient disappearance dur-
ing the back-propagation process.

Forward : Batt (Att, a, b)=

a · clip
(
round

(
Att − b

a

)
, 0, 1

)
,

Backward :
∂L

∂Att
=

{
a ∂L
∂Âtt

b ⩽ Att < a+ b

0 otherwise
,

(11)
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Figure 2. The Schematic diagram of DeMoivre–Laplace theorem with different d. The histograms display the Binomial distributions with
the same p = 0.5 and different d. The red lines are the corresponding fitted Gaussian distributions. When d increases, the Binomial
distribution can be better approximated by the Gaussian distribution.
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Figure 3. The distribution of the sample data sets with different numbers of data. Three sets are randomly sampled from the same Gaussian
distribution. (a) 20 Sample data, (b) 200 Sample data, (c) 2000 Sample data.



where Batt represents the binary function for the full preci-
sion attention matrix Att, and Âtt denotes the correspond-
ing binary attention matrix. clip (x, 0, 1) truncates values
that fall below 0 to 0 and those above 1 to 1, effectively
ensuring that the output remains within the range [0, 1].
round operation maps the input to the nearest integer.

To summarize the above observation, avoiding using
many tokens for the binary attention module is advisable.

Observation 2. Adding a residual connection in each bi-
nary layer is beneficial for binary ViT.

Detailed illustration. Layer-by-layer residual connection
refers to adding a residual connection for each binarization
layer in a model. The essence is that applying layer-by-layer
residual connections can effectively alleviate the disappear-
ance of activation gradients caused by the continuous su-
perposition of gradient truncation in multiple binary layers.
Meanwhile, binarization functions inherently lead to infor-
mation loss in activation values, and layer-by-layer resid-
ual connections help mitigate this information loss [7]. The
current binary ViT algorithms [2, 6] only retain the resid-
ual connection outside the MLP and multi-head attention
modules. Consequently, the gradient might not be fully ex-
ploited across all layers within each module of the binary
ViT models.

Fig. 4 shows one attention module. in the gradient back-
propagation of current binary ViT models [2, 6], the Jaco-
bian of the output Y is calculated with respect to the weight
of the linear layer. We take the weight Wq for the Q tensor
as an example, as shown in Eq. 12, the element of Y is rep-
resented by Y nl,ci and the element of Wq is represented by
W

ci,cj
q , we have

∂Y nl,ci

∂Wq
ci,cj =

∂Y nl,ci

∂B (Anl,n)
· ∂B (Anl,n)

∂Anl,n
· ∂Anl,n

∂Mnl,n
·

∂Mnl,n

∂B (Qnl,ci)
· ∂B (Qnl,ci)

∂Qnl,ci
·

∂Qnl,ci

∂B
(
W

ci,cj
q

) ·
∂B

(
W

ci,cj
q

)
∂W

ci,cj
q

(12)

where n ∈ Rt, l&k ∈ [1, t] , i&j ∈ [1, d]. t means the
token number and d is the channel number. We omit each
activation’s batch size and head dimension for simplicity of
description. B() means binarization function. M is the at-
tention matrix before the softmax operation and

√
d scaling

process. A is the attention matrix after the softmax process.

Through the forward propagation path of the attention
module, we can deduce the specific values of the gradients

of each part of the chain rule. As shown in Eq. 13:

∂Y nl,ci

∂B (Anl,n)
= B (V n,ci) ,

∂B (Anl,n)

∂Anl,n
= 10.5⩽Anl,n⩽1,

1nl,nk

0.5⩽Anl,n⩽1 =

{
1 0.5 ⩽ Anl,nk ⩽ 1
0 others

,

∂Anl,n

∂Mnl,n
=

Anl,n ⊗ (1−Anl,n)√
d

,

∂Mnl,n

∂B (Qnl,ci)
=

t∑
j=1

B (Kci,nj ),

∂B (Qnl,ci)

∂Qnl,ci
=

{
1 |Qnl,ci | ⩽ 1
0 others

,

∂Qnl,ci

∂B
(
W

ci,cj
q

) = B (Xnl,cj ) ,

∂B
(
W

ci,cj
q

)
∂W

ci,cj
q

=

{
1

∣∣W ci,cj
q

∣∣ ⩽ 1
0 others

,

(13)

where K is the K tensor and B (X) is the binary input ten-
sor of attention module. ⊗ denotes Hadamard product. So,
we can get the specific expression of ∂Y nl,ci

∂Wq
ci,cj as shwon in

Eq. 14.

∂Y nl,ci

∂Wq
ci,cj = G· ∂B (Qnl,ci)

∂Qnl,ci
·B (Xnl,cj )·

∂B
(
W

ci,cj
q

)
∂W

ci,cj
q

,

G =

t∑
k=1

(
B (V nk,ci)

T · 10.5⩽Anl,nk⩽1 ·Hk

)
,

Hk =
Anl,nk ⊗ (1−Anl,nk)√

d
·B (Kci,nk)

(14)
As demonstrated in Eq. 14, the superposition of multiple
binarized functions with large null range of the gradient re-
sults in vanishing gradient. To address this issue, similar
to previous works [5, 7], we add a residual connection for
each binary layer and attention module to avoid insufficient
optimization caused by the vanishing gradients.

For example, as shown in Fig. 4, when we introduce a
residual connection linking the Q tensor and the output Y ,
the gradient of the element Y nl,ci with respect to the ele-
ment W ci,cj

q is shown in Eq. 15. Due to the existence of the
residual link, the gradient from Y nl,ci to Qnl,ci is increased
by 1, which effectively avoids the gradient disappearance
problem.

∂Y nl,ci

∂Wq
ci,cj =

(
1 +G · ∂B (Qnl,ci)

∂Qnl,ci

)
·B (Xnl,cj )

·
∂B

(
W

ci,cj
q

)
∂W

ci,cj
q

,

(15)
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Figure 4. The information flow of the binary attention of ViT. The path with the black line and arrow refers to the information flow of
binary MHSA with the original architecture. The red line and arrow path denote the added residual branch, which can solve the vanishing
gradient problem caused by the superposition of truncated functions without introducing too much computation.
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Observation 3. The Adam optimizer enlarges the weight
oscillation of binary networks in the later stages of the
training process, failing to update numerous parameters ef-
fectively.

Detailed illustration. The previous work [9] asserts that the
regularization effect of second-order momentum in Adam
is beneficial for reactivating deactivated weights, which is
more effective than SGD. However, because a significant
proportion of elements in latent weights are close to zero,
weight oscillation becomes a common issue in binary net-
works during the later stages of model training. To shed
light on the underlying reason why the Adam optimizer is
not well-suited for the binary network towards the end of
training, we explain this phenomenon by re-examining the
Adam algorithm. The computational operations involved in

Adam are defined by Eq.16 and Eq.17 [4].

mt = β1mt−1 + (1− β1) gt,

st = β2st−1 + (1− β2) g
2
t ,

(16)

where mt is first-order momentum, a weighted average of
the 1st-order gradients (gt) over time. t is the number of it-
eration steps. st is second-order momentum. β1 and β2 are
two proportional coefficients 0.9 and 0.999, respectively.
Then the first- and second-order momenta after coefficient
correction, m̂t and ŝt, and the final gradient g

′

t which in-
volved in the weight update (including learning rate η) are
shown in Eq. 17 [4],

m̂t =
mt

1− βt
1

, ŝt =
st

1− βt
2

, g
′

t =
ηm̂t√
ŝt + ε

, (17)

where ε = 10−8. βt
1 and βt

2 are the t power of β1 and β2,
respectively. Then we put Eq. 16 into Eq. 17 and get the
simplified form of g

′

t, as shown in Eq. 18,

g
′

t = η

∑t
i=1 ((1−β1)β

t−i
1 gi)

1−βt
1√∑t

i=1 ((1−β2)β
t−i
2 g2

i )
1−βt

2
+ ε

, (18)

Based on the properties of geometric sequence that∑t
i=1 β

i =
β(1−βt)
(1−β) , Eq. 18 can be further simplified to



Eq. 19.

g
′

t = η

∑t
i=1 (β

t−i+1
1 gi)∑t

i=1 βi
1√∑t

i=1 (β
t−i+1
2 g2

i )∑t
i=1 βi

2
+ ε

= η

√∑t
i=1 β

i
2∑t

i=1 β
i
1

·
∑t

i=1

(
βt−i+1
1 gi

)
∑t

i=1

(
βt−i+1
2 g2i

)
+
√∑t

i=1 β
i
2ε

,

(19)

As t increases, the term
√∑t

i=1 β
i
2ε gradually increase.

The value of
√∑t

i=1 βi
2∑t

i=1 βi
1

according to the number of iteration

steps is shown in Fig. 5. The value of
√∑t

i=1 βi
2∑t

i=1 βi
1

approxi-
mately equals 3.51 when the number of iterations i is larger
than 5000. So the g

′

t is further simplified to Eq. 20.

g
′

t ≈ 3.51η ×

 ∑t
i=1

(
βt−i+1
1 gi

)√∑t
i=1

(
βt−i+1
2 g2i

)
+
√∑t

i=1 β
i
2ε

 ,

(20)
where the value of g

′

t is determined by the learning rate η,
β1, β2, and the gi. When the weight oscillation happens,
the sign of gradient gi changes frequently, causing the nu-
merator of Eq. 20 in different iteration steps to cancel each
other out, while the denominator of Eq. 20 keeps growing
(Note that the decay rate of βt

2 is much smaller than that
of βt

1). As a result, many parameters close to 0 are deac-
tivated in the later stages of model training. To solve this
problem, we add a regularization loss function to constrain
the distribution of weights to keep them away from zero.

3. Experiment
3.1. Ablation study

Architecture Details The hyper-parameters of our
BHViT can be summarized in Tab. 1.

Table 1. Hyper-parameters of BHViT (n is 64).

Parameter BHViT-tiny BHViT-small

The number of blocks [2,2,6,2] [3,4,8,4]
The dimension of activation [n,2n,4n,8n] [n,2n,4n,8n]

The expand ratio of MLP [8,8,4,4] [8,8,4,4]
The number of attention head [4,8] [4,8]

Binary atrous convolution layer As shown in Fig. 6, due
to the introduced “0” states, the binary atrous convolution
layer is not suitable for deployment on binary devices. To
solve this problem, we could use the shift operation pro-
posed in section 4 to obtain the feature at the position that

the corresponding weight of atrous convolution is nonzero.
Then, the select feature and corresponding weight are re-
shaped to one dimension to apply the ”xnor” and ”pop-
count” operations instead of the multiplication between bi-
nary vectors.

In another way, we could apply the max pooling layer
(with no additional FLOPs) coordinated with standard 3×3
convolution to implement the convolution with different re-
ceptive fields. As shown in Tab. 2, we conduct a perfor-
mance comparison between the token mixer using dilated
convolutions and the version using max pooling.

Table 2. The performance of BHVIT with different version token
mixer.

Network Token mixer Top1(%)

BHViT Dilated Convolution 70.1

BHViT Max pooling 69.8

According to Tab. 2, each version of the token mixer has
its advantages. Dilated convolutions obtain higher classi-
fication accuracy, but deploying this setting requires pre-
processing for the activation. Deploying the token mixer
with max pooling is relatively easy, but obtaining a rela-
tively lower accuracy.

The ablation study about the latency To obtain a la-
tency result comparison between the full precision BHViT
and the corresponding binary version, we first transfer the
Pytorch code of BHViT to the ONNX version. Then, we
utilize the BOLT toolbox [3] to implement our method to
the edge device based on an ARM Cortex-A76 CPU (with-
out cuda). The result is shown in the Tab. 3. Due to the
lack of optimization and deployment methods for the spe-
cific modules in the ViT structure, the acceleration results of
BHViT cannot achieve an ideal acceleration state the same
as the BNN. Therefore, further deployment techniques must
be developed to show the full advantages of binary vision
transformers on edge devices.

Table 3. The latency result of the full precision BHViT and binary
BHViT.

Network W/A (bit) Latency (ms)

BHViT 32/32 612

BHViT 1/1 157

The impact of different architecture: In this subsection,
we compare the performance differences of three variants
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of ViT architectures before and after the binarization pro-
cess. As shown in Tab. 4, The accuracy differences of the
three network structures before and after binarization are
30.4%, 12.2%, and 10.9%, respectively. Compared with
DeiT-Small and BinaryViT, the network architecture of the
proposed BHViT is more suitable for binarization.

Table 4. The performance difference of three variants of ViT.

Network Binary method W/A Top1(%)

DeiT-Small [11] ReActNet [8] 32-32 79.9
1-1 49.5

BinaryViT [5] BinaryViT [5] 32-32 79.9
1-1 67.7

Ours Ours 32-32 79.3
1-1 68.4
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