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In the supplementary material, we provide additional in-
formation and experimental results relating to ConMo. We
begin by providing more details about the experimental
setup and user study (Sec.1). Then, we provide more ex-
perimental results comparing our method with our baseline
DMT [3], focusing on the following three aspects: Multi-
subject motion transfer, Fine-grained motion transfer and
motion transfer with significant changes in shape (Sec.2). In
Sec.3, We present additional results about applications fo-
cusing on repositioning and resizing. Finally we discuss the
limitation of our method regarding the use of masks (Sec.4)

1. Implementation Details and User Study.
Training details: To ensure a fair comparison with DMT
[3], we use the same parameter settings and feature selec-
tion. For the initial noise, we use the same initialization
method as in DMT, which involves downsampling and up-
sampling operations, except for the resize and reposition
processes, where we use randomly initialized noise.
User study details: For the user study on the right side of
Table 1 in main manuscript, we investigated 25 participants
to evaluate the effectiveness of ConMo and all the compar-
ison methods on our dataset consists of 26 videos and 56
edited text-video pairs. The user study on the right side of
Table 1 in main manuscript primarily assessed three aspects
referencing VMC [1] and MotionClone [2]: the motion re-
tention between the input video and the generated video,
the motion quality of the generated video and the alignment
between the target prompt and the generated video. The
survey utilized a rating scale from 1 to 5. To evaluate mo-
tion preservation, the participants were asked: “ To what
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extent is the motion from the input video retained in the
generated video? ” To assess motion quality, participants
were asked: “ Is the motion in the generated video suffi-
ciently smooth? ” To decide text alignment, participants
were asked: “Does the generated video semantically align
with the target prompt? ” The result of Table 1 in main
manuscript shows that our method outperforms the base-
lines in all three aspects.

2. More Results Comparing with DMT

In this section, we further illustrate our method through
additional visualizations, primarily comparing it with our
baseline DMT[3].

In Figure 1, We compare our method with the results
generated by DMT[3] on multi-subject videos. In case (a),
DMT[3] preserves holistic motion patterns but fails to dis-
tinguish individual subject trajectories when two cars share
identical motion in the source video, it erroneously gener-
ates additional vehicles along the common trajectory rather
than establishing precise correspondence between the syn-
thesized SUV and reference race car. This limitation be-
comes more evident in case (b) involving fine-grained limb
movements, where DMT’s motion extraction strategy [3]
based on compressed global feature only retains dominant
foreground actions (the woman’s motion) with degraded ar-
ticulation details, whereas our decoupling strategy success-
fully preserves nuanced limb dynamics across all subjects.
When handling conflicting motions as shown in (c), DMT’s
[3] entangled motion representation collapses into static
outputs when reference subjects exhibit opposing move-
ments, while our approach accurately reconstructs the col-
lision physics through separated motion modeling. Further-
more, in scenario (e) containing subjects with varying mo-
tion saliency, DMT[3] tends to suppress subtle movements
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of less active subjects, whereas our separated representation
learning ensures simultaneous preservation of both promi-
nent and latent motions through explicit motion decompo-
sition. Beyond these cases, our method consistently out-
performs DMT[3] across other examples in terms of video
quality and robustness, with significantly fewer visual dis-
tortions and artifacts.

In Figure 2, we compare our method’s ability to preserve
the original video’s fine-grained motion against DMT[3].
In case (a), the duck’s inconsistent motion direction and
brief initial left-down motion cause DMT, which calculates
motion globally, to overlook this process. In contrast, our
method, which uses a fine-grained mask based approach,
better retains the trajectory details. As a result, the gener-
ated video accurately preserves this part of the reference
motion. In case (b), the smoke’s motion in the original
video affects the global motion extracted by DMT[3]. This
leads to the car’s left-turn process being “counteracted”.
The generated video shows the car moving in a straight line
with many artifacts. In comparison, our method extracts the
original drifting motion of the race car independently and
transfers it well to the generated video. For cases (c) and
(d), our method better preserves fine-grained human limb
movements than DMT[3], whose results appear unnatural.

In Figure 3, we further demonstrate that motion can
be transferred to subjects with very drastic shape changes
(such as from an airplane to a hydrogen balloon, from a
train to a person riding a bicycle, etc.) through soft guid-
ance with larger wc. In contrast, DMT[3] is limited by the
shape-related information in the original motion. As a re-
sult, it often only achieves texture replacement for the gen-
erated subjects, failing to realize complete shape changes.

3. More Results about Applications

For the applications we proposed in the main text, we also
present additional results here focusing on repositioning
and resizing:

Regarding the repositioning task, as shown in Figure 4,
we have successfully achieved the horizontal and vertical
movement of the original subject’s motion, making the gen-
erated video more aligned with the target prompt’s descrip-
tion. Moreover, we have demonstrated that the correspond-
ing repositioning strategy can be transferred to videos with
multiple subjects.

For the resizing task, we further prove in Figure 5 that
we can control the scaling of the target subject, from en-
largement (man to giant) to reduction (man to boy), which
is of significant importance for motion transfer that requires
size control.

4. Limitation
Existing methods are limited by the mask segmentation pro-
cess. If the mask input is incomplete or if the video contains
effects caused by objects that cannot be annotated (e.g.,
large shadows), it may lead to the decoupled motion still
containing information from other subjects, as shown in
Figure 6. Such contaminated motion can negatively impact
the generated videos.



Figure 1. Multi-subject motion transfer. We validate that our method achieves better motion retention for multi-subject videos. In each
example, the results in the second row are from ConMo, and the results in the third row are from DMT [3].



Figure 2. Fine-grained motion transfer. We demonstrates that our method effectively maintains fine-grained motion. In each example,
the results in the second row are from ConMo, and the results in the third row are from DMT[3].



Figure 3. Motion transfer with significant changes in shape. We demonstrates the motion transfer results of ConMo compared to DMT
[3] when there is a significant difference in shape between the target subject and the reference subject. In each example, the results in the
second row are from ConMo, and the results in the third row are from DMT [3].



Figure 4. Position Control. In (a), we have demonstrated our ability to reposition the main subject to a specified location (moving left and
up), and as shown in (b), this operation can be applied to videos with multiple subjects.

Source Prompt: “A man in a safety vest walks towards a helicopter.”

Target Prompt: “A giant walks towards a airplane.”

Target Prompt: “A boy walks towards a drone.”

Figure 5. Size Control. We have demonstrated our control capabilities over size, which allows the moving subjects in the video to present
a more semantically appropriate effect (with ’boy’ corresponding to a smaller size and ’giant’ corresponding to a larger size).

Source Prompt: “Two cars are driving down a highway.”

Target Prompt: “A truck is driving down a highway. ”

Figure 6. Limitation. In the process of removing the motion of the car on the left side of the original video, the segmentation model
failed to account for the effects of the corresponding object, specifically the shadow in the video. As a result, the motion of the shadow can
negatively impact the generated video.
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