
DiSRT-In-Bed: Diffusion-Based Sim-to-Real Transfer Framework for In-Bed
Human Mesh Recovery

Supplementary Material

In the supplementary material, we provide additional
discussions on synthetic datasets for human mesh recov-
ery(Sec. 1), as well as additional details on data augmen-
tation (Sec. 2.1), loss functions (Sec. 2.2), ablation stud-
ies (Sec. 3), and visualization examples (Sec. 4) to further
demonstrate the effectiveness of the DiSRT-In-Bed frame-
work.

1. Synthetic Datasets for Human Mesh Recov-
ery

Synthetic datasets are widely used in advancing 3D human
mesh recovery by providing large-scale, diverse, and ac-
curately labeled data that would be difficult and expensive
to obtain through real-world capture. Prior works such as
AGORA [5], BEDLAM [1], and SynBody [7] demonstrate
that incorporating synthetic data in training enhances hu-
man mesh recovery performance. However, general syn-
thetic datasets are not directly applicable to in-bed scenar-
ios, as lying poses are underrepresented. For in-bed hu-
man mesh recovery, BodyPressure [3] builds upon Bod-
ies at Rest [2] to enhance synthetic dataset generation.
It leverages physics-based simulation to produce realistic
depth and pressure images, better capturing human-bed in-
teractions and occlusions. Additionally, BodyPressure and
BodyMAP further demonstrate that scenario-specific syn-
thetic datasets can improve in-bed human mesh estimation.

2. Additional Details about Training Strategy
2.1. Data Augmentation
To enhance the robustness of the diffusion model during
training and fine-tuning, we apply various data augmenta-
tion techniques to the input depth images for both synthetic
and real datasets, simulating complex real-world scenarios.
As shown in Fig. 1, the following augmentations are ap-
plied:
• Random Rotation: Depth images are randomly rotated

to introduce variability in human in-bed poses.
• Random Erase: Portions of the depth image are ran-

domly masked, simulating occlusions caused by objects
such as tables or blankets covering parts of the human
body.

• Random Noise: Gaussian noise is added to mimic the
noise introduced by depth sensors and environmental fac-
tors.

These augmentations aim to improve the model’s ability to
generalize to diverse and challenging real-world conditions.
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Figure 1. Illustration of Data Augmentation Operations.

2.2. Loss Functions
The total diffusion loss used to train and fine-tune the dif-
fusion model contains two components: SMPL parameter
loss and vertex position loss. For SMPL parameter loss, we
employ standard human pose and shape regularization loss
utilized in BodyMAP [6] as follows:

LSMPL = λβ∥β − β̂∥1 + λθ∥θ − θ̂∥1

+ λψx

(
∥u− û∥1 + ∥v − v̂∥1

)
+ λJ

24∑
i=1

∥ji − ĵi∥2,

λβ =
1

10σβ
, λθ =

1

69σθ
, λψx =

1

6σψx

, λJ =
1

24σJ
,

(1)
where each hyper-parameter term is normalized by stan-

dard deviations of body parameters σβ, joint angles σθ ,
continuous global rotation σψx and Cartesian joint posi-
tions, computed from the entire synthetic training set. ji ⊂
J represents the Cartesian position of a single joint. Ad-
ditionally, we use vertex loss to further enhance diffusion
stability and performance:

Lv2v =
1

NVσV

NV∑
i=1

∥vi − v̂i∥2 (2)

where vi ⊂ V represents the Cartesian position of a single



human mesh vertex, NV = 6890 vertices, and the loss term
is normalized by σV.

Thus, the total loss for the diffusion reverse process is:

Ltotal = LSMPL + λv2vLv2v, (3)

where λv2v is a tunable hyper-parameters. We set λv2v =
1.0 for all the experiments.

2.3. Learning Rate Scheduler
As mentioned in Sec. 4.3, we adopt a linearly adjusted
learning rate scheduler to adapt to varying amount of
real-world data during the fine-tuning stage. Specifically,
given the initial learning rate lr init, the current step in-
dex step cur, and the total number of fine-tuning steps
steps total, the current learning rate is computed as:

lr cur =
(
1− step cur

steps total + 1

)
lr init. (4)

3. Additional Ablation Study
3.1. Effectiveness of Loss function

Loss MJPJE PVE

SMPL Loss 53.48 66.86
SMPL Loss + v2v Loss 50.81 61.18

Table 1. Ablation on Loss Function.

We conduct an ablation study by comparing models
trained with different loss functions using the complete syn-
thetic and real training datasets. Tab. 1 shows that adding
the v2v loss term to the total loss function enhances the
model’s performance in mesh estimation in terms of both
MPJPE and PVE metrics.

3.2. Additional Comparisons of PVE Results
In addition to the results presented in Sec.5.5 of the main pa-
per, we provide charts for the PVE metric to further demon-
strate the effectiveness of our Sim-to-Real Transfer Frame-
work and the proposed diffusion model architecture. The
trends observed in PVE results across varying real data uti-
lization percentages align closely with those of the MPJPE
results.

Fig. 2a shows that leveraging synthetic data substantially
enhances model performance in the PVE metric. Fig. 2b
demonstrates that integrating our Sim-to-Real Transfer
Framework into the BodyMAP model results in significant
improvements, particularly under scenarios with limited ac-
cess to real-world data. Additionally, Fig. 2c compares
four diffusion model designs on the PVE metric. Although
the differences in PVE are less pronounced compared to
the MPJPE results shown in Fig.5c of the main paper, our
proposed architecture consistently outperforms other design
choices.

3.3. Effectiveness of Fine-tuning Strategies
In the fine-tuning stage, we introduce a linearly and auto-
matically adjusted scheduler as described in Sec.4.3 of the
main paper. The initial learning rate is set to match that of
the training stage, i.e., lr = 1 × 10−4. During fine-tuning,
the learning rate and weight decay are updated at each dif-
fusion step using the AdamW optimizer. Specifically, for
each step, we input a batch of depth images paired with ran-
domly generated timesteps and generate noisy SMPL pa-
rameters by iteratively adding Gaussian noise to the ground
truth SMPL parameters based on the given timestep. The
diffusion model then learns to denoise these SMPL param-
eters and directly predict the ground truth parameters, as
detailed in Sec.4.2.1 of the main paper.

In Fig. 3, we compare the performance of models in
terms of MPJPE and PVE across different data splits, us-
ing various fine-tuning scheduler strategies, including lin-
ear, cosine, exponential, and no scheduler. For the linear
and cosine schedulers, the maximum number of iterations
depends on the amount of real data available and the number
of epochs used for fine-tuning. For the exponential sched-
uler, we set the multiplicative decay factor for the learning
rate to 0.999. The results show that the linearly-adjusted
scheduler achieves consistently lower errors compared to
other approaches. This demonstrates the effectiveness of
our fine-tuning strategy in improving the model’s perfor-
mance.

3.4. Effectiveness of Synthetic Data Utilization
In Table 1, we present experiments using all synthetic data
combined with varying proportions of real training data to
validate the generalizability and effectiveness of the pro-
posed DiSRT-In-Bed pipeline. Additionally, we perform
experiments to further demonstrate the impact of incorpo-
rating synthetic data. In this setting, training is conducted
using all real data combined with different proportions of
synthetic data, while testing is performed on the same real
dataset. As shown in Fig. 4, both MPJPE and PVE generally
decrease as the proportion of synthetic data increases. How-
ever, a slight increase in error metrics is observed when syn-
thetic data reaches 70% and 90% due to distribution shifts.
Overall, the best performance is achieved when using all
synthetic data and all real training data, as presented in Sec.
5, compared to settings with less synthetic data.

4. Additional Visualizations

We present additional visualization examples to illustrate
the effectiveness of our DiSRT-In-Bed method compared to
the state-of-the-art BodyMAP method. As shown in Fig. 6,
our proposed method achieves superior mesh predictions,
especially when access to real-world data is limited. The
predictions from our model align more closely with the in-
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Figure 2. Additional Ablation Study on Diffusion-Based Sim-to-Real Transfer Framework.
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Figure 3. Ablation Study on Fine-tuning Schedulers.

put data and exhibit stable performance across varying cov-
ering scenarios.

Fig. 7 provides additional visualizations on the SLP [4]
hospital setting dataset, which features a different data
distribution from the training dataset and lacks labeled
ground truth. Here, we compare our method, with and
without the proposed Sim-to-Real training strategies de-
scribed in Sec.4.3 of the main paper, against BodyMAP in
terms of generalization to diverse real-world settings. All
models were trained on the complete synthetic dataset and
the full real-world SLP [4] home setting dataset.

The results reveal that our method without the Sim-to-
Real training strategies performs comparably to BodyMAP;
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Figure 4. Ablation Study on Synthetic Data Utilization.

however, both are less stable across different covering sce-
narios and fail to capture finer details. In contrast, our pro-
posed Sim-to-Real framework significantly enhances stabil-
ity and detail alignment, demonstrating its robustness and
generalization capability across varying real-world condi-
tions.

5. Limitations and Future Work

While our proposed DiSRT-In-Bed demonstrates promising
performance in handling in-bed human mesh recovery with
limited real-world data and strong generalization across dif-
ferent environmental settings, there are two key directions
for future work: improving accuracy and enhancing scala-
bility.

Accuracy: Future efforts could focus on improving the
prediction quality of in-bed human body meshes. For in-
stance, as shown in Fig. 5a, failure cases involving self-
interpenetration remain challenging. In the first example,
interpenetration occurs near the left foot and right knee due
to the complex pose and the close proximity of these body
parts. Similarly, in the second example, self-contact intro-
duces ambiguity in determining the precise position of body
parts. Addressing these issues could involve refining model
components to better account for self-contact scenarios or
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Figure 5. Failure Cases of DiSRT-In-Bed.

incorporating additional constraints to reduce interpenetra-
tion errors.

Scalability: Extending DiSRT-In-Bed to establish its
clinical effectiveness is another critical direction. Fig. 5b
highlights a misaligned prediction caused by a challeng-
ing, out-of-distribution input from the SLP [4] hospital-
setting dataset. Addressing such misalignments in different
settings could involve several approaches: expanding syn-
thetic datasets using customizable simulations, incremen-
tally fine-tuning the diffusion model with newly collected
data, and designing new diffusion model components that
integrate domain-specific knowledge. These advancements
could push our framework closer to practical deployment in
clinical environments.
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Figure 6. Additional Visualization Comparison with Baseline on the SLP [4] Home-Setting Dataset.
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Figure 7. Additional Visualization Comparison with Baseline on the SLP [4] Hospital-Setting Dataset.


