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Supplementary Material

A. Overview
In this supplementary material, we elaborate on the details of
our approach (B), datasets (C), and experiments (D). We also
include results on an in-the-wild scene from HyFluid [15]
and results on using multiple views rather than a single
view (E). We further discuss ablation study results (F). We
compile video results in our project website https://
yuegao.me/FluidNexus. We strongly encourage the
readers to review the video results first.

B. Technical Details

Position-based fluid simulation. Our physics simulation
is based on position-based fluid (PBF) [6, 7] which extends
position-based dynamics (PBD) [7, 9]. PBD provides a
simple and flexiable particle-based simulation framework
based on solving position constraints. In the following, we
briefly review the PBF simulation. We refer the reader to
Macklin et.al. [7, 9] for more details. In short, PBD uses
a set of particles to represent the scene and each particle
consists of its position, mass, and velocity. PBD solves a
system of non-linear equality and inequality constraints for
the position correction ∆p such that physical constraints are
met:

ci(p+∆p) = 0, i = 1, . . . , n,

cj(p+∆p) ≥ 0, j = 1, . . . , n,
(S1)

where p = [p1,p2, . . . ,pN ]
T denotes the vector of particle

positions. Constraints are solved sequentially using the lin-
earization of C around p, and the position change ∆p, is
restricted to lie along the constraint gradient:

ci(p+∆p) ≈ ci(p) +∇ci(p)∆p = 0, (S2)

and the particle velocity is then given by v = ∆p
∆t . We

assume that all physical particles have a mass of 1 to simplify
the formulation.

The constraint for fluid (incompressibility) is given by

cfluid(p1, . . . ,pNphysical) =
ρi
ρ0

− 1 = 0, (S3)

where the fluid density is estimated by ρi =
∑

j K(pi−pj)
and K is a kernel function. We use the cubic Poly6 kernel [8].
We also utilize the drag force as an external force to model
the effect of fast moving air interacting with the surrounding
environment:

fi = −k(vi − venv)max(0, 1− ρi
ρo

), (S4)

where venv is the environmental velocity at the particle posi-
tion and is set to 0 to model still air, and k > 0 is the drag
force coefficient.

Initialization. To initialize the fluid simulation, we follow
Macklin et.al. [7] to add a source region and run Nstable
stabilization simulation steps at t = 0 (i.e., before the re-
construction starts). We seed physical particles and visual
particles within the source region at each timestep. After the
stabilization steps, we obtain the initial physical particles
{p0,u0} and visual particle positions {x0}. All other visual
particle attributes are initialized as constants {c0, s0,o0, r0}
for all timesteps.

Simulation and advection operators. The simula-
tion operator for the physical particle position psim

t =
Sim(ut−1,pt−1) consists of three steps: (1) We generate a
guess of particle velocities ût = ut−1 +∆t · α · g +∆t · f
where g denotes the gravity and α < 0 denotes the buoy-
ancy coefficient. f denotes an optional external force. (2)
We generate a guess of physical particle positions p̂t =
pt−1 +∆t · ût. (3) We obtain the simulation result psim

t by
solving cfluid(p̂t +∆pt) = 0.

For the advection operator Adv, we use a simple for-
ward Euler integrator, i.e., Adv(V,x) = x + ∆t · V(x),
while advanced advection schemes can also be used e.g.,
BFECC [12].

Regularization term. To encourage temporal smoothness
we add a regularization term Lreg:

Lreg = λc∥ct − ct−1∥22 + λs∥st − st−1∥22
+ λo∥ot − ot−1∥22 + λr∥rt − rt−1∥22 + Laniso, (S5)

where λc, λs, λo, and λr are weighting coefficients for the
color, scale, opacity, and orientation terms respectively. The
L2 terms help maintain smooth transitions in the visual at-
tributes. We also adopt the anisotropic loss Laniso from Xie
et.al. [14] to prevent overly skinny visual particles.

https://yuegao.me/FluidNexus
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Figure S1. Flowchart of FluidNexus. The reconstruction algorithm is shown in Alg. S1. On the left is the reconstruction process which
takes a single video as input and produces the two-layer particles within the video duration. On the right is the prediction process which
takes the reconstructed two-layer particles as input and produces the particles in future timesteps.

Algorithm S1 FluidNexus: Reconstruction

Input: Multi-view videos {Vc}Cc=0, camera poses
{πc}Cc=0

Initialize: Physical particles {p0,u0} and visual particles
{x0, c0, s0,o0, r0} through stabilization

Physical particle reconstruction for t = 1 to T :
1. Simulate physical guess psim

t = Sim(ut−1,pt−1)
2. Optimize pt by minimizing:

– Simulation loss: Lsim = ∥pt − psim
t ∥22

– Incompressibility loss: Lincomp on current and next
timesteps

– Visual loss: Lvisual across all views
3. Update velocity ut = (pt − pt−1)/∆t

Visual particle reconstruction for t = 1 to T :
1. Compute visual positions xt = Adv(Vt,xt−1)
2. Optimize {ct, st,ot, rt} by minimizing:

– Visual loss: Lvisual across all views
– Temporal regularization: Lreg with previous timestep

Output: Reconstructed fluid velocity by {pt,ut}Tt=1 and
appearance by {xt, ct, st,ot, rt}Tt=1

Algorithm S2 FluidNexus: Prediction

Input: Reconstructed states {pT ,uT } and
{xT , cT , sT ,oT , rT }, camera poses {πc}Cc=0

Initial simulation for t = T + 1 to Ttarget:
1. Simulate physical particles: ppred

t = Sim(upred
t−1,p

pred
t−1)

2. Advect visual particles: xpred
t = Adv(Vpred

t ,xpred
t−1)

3. Render rough multi-view frames: Îct =

Render(πc,x
pred
t , c0, s0,o0, r0)

Video refinement: Generate reference videos
{(IcT+1, · · · , IcTtarget

)}Cc=0 using the generative video re-

finement model v on each rough video (ÎcT+1, · · · , ÎcTtarget
)

Physical particle reconstruction for t = T + 1 to Ttarget:
1. Simulate physical guess psim

t = Sim(ut−1,pt−1)
2. Optimize pt by minimizing:

– Simulation loss: Lsim = ∥pt − psim
t ∥22

– Incompressibility loss: Lincomp on current and next
timesteps

– Visual loss: Lvisual across all views
3. Update velocity ut = (pt − pt−1)/∆t

Visual particle reconstruction for t = T + 1 to Ttarget:
1. Compute visual positions xt = Adv(Vt,xt−1)
2. Optimize {ct, st,ot, rt} by minimizing:

– Visual loss: Lvisual across all views
– Temporal regularization: Lreg with previous timestep

Output: Predicted fluid dynamics {pt,ut}
Ttarget
t=T+1 and

appearance {xt, ct, st,ot, rt}
Ttarget
t=T+1

Algorithms and flowchart. We summarize the fluid re-
construction algorithm in Alg. S1, and the fluid prediction
algorithm in Alg. S2. We further show a flowchart in Fig-
ure S1 to visualize the entire pipeline of FluidNexus.
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Figure S2. The configuration of our data capture system.
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Figure S3. The raw frames captured by our five cameras.

C. Dataset Details

We show a photo and an illustration of our dataset capture
setup in Figure S2. A black cloth was used as the back-
ground, onto which patches of various shapes were attached.
To eliminate the influence of ambient light, we employed
two adjustable color-temperature light sources. A handheld
portable fog generator (Fog Machine Model S) with remote
start and stop control created the desired smoke effects. The
other objects on the ground were only used to hold down the
black cloth to prevent it from moving and are not directly
related to our setup. Other objects were used to add textures
to help camera calibration.

The setup included six GoPro HERO 12 cameras, five of
which were fixed to their locations and used as primary data
recording cameras, while the sixth served as a secondary
camera to capture multiple images for camera calibration
using COLMAP [10, 11]. The GoPro cameras were mounted
on tripods and configured to a 5K (2988×5312) resolution
with 1.4× magnification. The raw frames captured by the

cameras are shown in Figure S3. We center-cropped the
frames to 1440×2560 and resized them to 1080×1920. All
experiments and camera calibrations were conducted at a
resolution of 1080×1920. The frame rate was set to 50 fps to
address power-line flicker. During preprocessing, all videos
were converted into individual frames, and we sampled the
frames with a step size of 2 for all experiments. The frame
rate was set to 30 fps for presenting videos and conducting
experiments.

Although we used a program to control the start and
stop of the cameras, slight mis-synchronization could still
occur. To address this, we manually labeled the starting
frame of each video to ensure frame synchronization across
all viewpoints.

For both of our datasets, we recorded 120 scenes each.
We used 100 scenes as training data and evaluated the
model on the remaining 20 scenes. Additionally, for the
ScalarFlow [2] dataset, we used 94 scenes for training and
evaluated on the remaining 10 scenes.
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Figure S4. Illustration: Frame-wise Novel View Synthesis module.

D. Further Implementation Details

Simulation details. In our experiments, we set the timestep
∆t = 1/30 seconds. We set the drag force coefficient k = 3.
We set the regularization loss weights λc = 10, λs = 0,
λo = 8, λr = 0.1. For the ScalarFlow dataset, we set the
buoyancy coefficient α = −3 and environmental density
ρ0 = 2. For the FluidNexus-Smoke and FluidNexus-Ball
datasets, we set α = −6 and ρ0 = 1.5. We set the stabi-
lization simulation steps to Nstable = 20. We set the PBF
constraint solver iteration count to 10. This maintains mean
simulation speed of 0.04493 seconds per simulation timestep
(amounting to 22.26 FPS).

Frame-wise novel view synthesis model training. We illus-
trate our frame-wise novel view synthesis model g in Fig. S4.
It is based on an image diffusion model. In particular, it
takes an input-view frame and a target-view camera pose as
control signals, and it gradually denoises a Gaussian noise
to generate the target-view frame. The generated target-view
frames are the input to the generative video refinement mod-
ule. We utilized Zero123 [5] as our image diffusion model.
We performed full-parameter fine-tuning based on the of-
ficial implementation and the pre-trained Zero123-XL [5]
model, which is trained on the Objaverse-XL [1] dataset. We
used a smaller batch size of 92 while keeping other hyper-
parameters (such as the base learning rate) unchanged.

We fine-tune it on three datasets individually. For the
ScalarFlow dataset, we fine-tune the model for 15, 000 it-
erations. For FluidNexus-Smoke and FluidNexus-Ball, we
fine-tune it for 50, 000 iterations. We keep all other official
settings and use the official implementation of Zero123 [5].
For our experiments, we apply square padding and resize
it to 256×256 to match the input and output frame size of
the original implementation. We maintain the aspect ratio
by cropping the output results and resizing them back to a
resolution of 1080×1920.

Generative video refinement model training. For the gen-
erative video refinement model v, we use CogVideoX [3] as
our base model and fine-tune it. We use the official imple-
mentation of CogVideoX [3]. We utilized CogVLM2 [13]
to generate captions for all videos, and fine-tuned the model
for 10, 000 iterations across all datasets using the official
LoRA [4] implementation included in CogVideoX’s offi-
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Figure S5. Qualitative results of re-simulation on in-the-wild data.

cial implementation. Similar to training the view synthe-
sis model, we pad and resize our dataset to the resolu-
tion required by CogVideoX [3] (720×480), and inversely
transform its output back to our experimental resolution
(1080×1920).

Interaction simulation. For the counterfactual interaction
simulation in Sec. 4.2, we consider two types of interaction:
external body force (e.g., the wind) and one-way coupling
with rigid body (e.g., the ball). External body force is simply
implemented by setting f . Specifically, we set the force f
such that it is exponentially increasing with the physical
particle position along the y axis (opposite gravity direction).
The one-way coupling is implemented by fixing the rigid
object still and use the simplified contact constraints from
Macklin et.al. [7]. In particular, we use 3D Gaussian splat-
ting to reconstruct the ball, which gives particles along the
surface of the ball. The constraint for the fluid’s physical
particles is that if a particle enters the interior of the rigid
object, we find the nearest object surface particle and update
the physical fluid particle position to the exterior of the rigid
body.

E. More Results

In-the-wild scene. We reconstruct an in-the-wild example
from the HyFluid [15] paper. We use 3 available input views,
as our video synthesizer requires training data. We showcase
our re-simulation results in Fig. S5, and please check our
website for video results. Ours significantly outperforms
other methods.

Multi-view reconstruction. We use 4 views as input and
1 holdout view for testing. We show results in Tab. S1 and
Fig. S6, as well as video results in our website. Our approach
significantly outperforms prior methods. It indeed improves
performances compared to ours using a single-view input.

F. Further Ablation Comparison

We provide all variants of the ablation experiments in the
video results, showcasing the two tasks of novel view syn-
thesis and re-simulation.

Firstly, in the novel view synthesis task, we observe that
when our method excludes the novel-view video synthesizer



Model Novel View Synthesis Future Prediction Re-simulation
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

PINF 24.45 0.8568 0.4973 20.42 0.7816 0.5883 19.44 0.6176 0.5672
HyFluid 26.42 0.8676 0.4146 22.91 0.8181 0.6049 22.46 0.8381 0.5623
STG 19.58 0.7101 0.4224 18.48 0.6105 0.4929 19.40 0.6098 0.5219
Ours-1 30.43 0.9212 0.1812 25.74 0.8609 0.2675 30.42 0.9211 0.1812
Ours 31.15 0.9216 0.1233 26.84 0.8654 0.2382 31.14 0.9215 0.1233

PINF 21.17 0.7507 0.5317 20.08 0.7195 0.5344 18.38 0.5618 0.5533
HyFluid 23.92 0.8327 0.4346 21.65 0.8088 0.5907 20.29 0.8165 0.5689
STG 18.79 0.7209 0.3884 18.45 0.5982 0.5054 18.68 0.6209 0.4883
Ours-1 28.24 0.9080 0.1719 24.82 0.8431 0.2607 28.23 0.9079 0.1720
Ours 30.42 0.9211 0.1121 26.26 0.8479 0.2105 30.41 0.9211 0.1122

Table S1. Quantitative results on FluidNexus-Smoke (upper) and
FluidNexus-Ball (lower) with 4 input views. “Ours-1” denotes the
performances using a single view as input.
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Figure S6. Novel view synthesis results with 4 input views.

(“w/o NVS”), the results degrade significantly due to the lack
of multi-view constraints. Additionally, when we remove the
generative video refinement component (“w/o GVR”), the
results include noticeably more jittering artifacts. Further-
more, we can observe abrupt transitions in the video results
when the long video generation is removed (“w/o LVG”).

To validate the importance of our physics constraints,
we conducted comparisons on the re-simulation task. First,
when the physical loss is removed (“w/o Lphysics”), the video
results degrade significantly. This is because the optimized
velocity field lacks physical accuracy, leading to implausi-
ble particle dynamics during advection in the re-simulation,
which results in numerous artifacts. Additionally, when we
remove the incompressibility loss (“w/o Lincomp”), the visual
dynamics look unnatural with mild jittering. When the simu-
lation loss is removed (“w/o Lsim”), the visual results also
look unnatural with abrupt transitions.
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