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1. Proof of the Theorem 1
Proof. In the main text, at task t, we have the learning prob-
lem
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which leads to optimal estimation
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From the definition of the auto-correlation matrix, we

can get the equation
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According to the Woodbury matrix identity, we can com-
plete the proof for the recursive formulation of Rt (i.B.
equation 12 in the main text) as
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We can break the estimation 1 into

Ŵ
L
t = Rt

[
XB

1:t−1

T
XB

t

T
] [ Y 1:t−1 1

1 Y t

]

=

RtX
B
1:t−1

T
Y 1:t−1︸ ︷︷ ︸

the first term

RtX
B
t

T
Y t︸ ︷︷ ︸

the second term

 .

(3)

The first term obviously involves the historical data, while
the second term does not. We aim to deal with it with the
weight Ŵ

L
t−1 of task t − 1. Combing equation 2, we can

rewrite the first term as
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this, we take advantage of the recursive formulation Rt in
equation 2 and rewrite equation 4 into
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L
t−1

= Ŵ
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Hence, we can complete the proof and rewrite the esti-
mation 3:
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At task t, we can recursively obtain weight matrix Ŵ
L
t us-

ing only current task data, auto-correlation matrix Rt−1 and
the previous task weight W L

t−1, the latter two representing
all historical data.

2. Pseudo Code
We outline the pipeline of our method in Algorithm 1. For
the first task, an adapter is trained with cross-entropy loss,
and knowledge is memorized using the analytical classifica-
tion head via a least squares solution. For subsequent tasks,
one adapter is trained while another is updated through
weight interpolation. Following this, we facilitate the re-
cursive memorization of new task knowledge and introduce
the knowledge rumination mechanism, which refines and
reinforces old knowledge using fine-grained features.
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Figure 1. Detailed comparisons of different components in MoAL. The notations KD, KR, and WI represent Knowledge Distillation,
Knowledge Rumination, and Weight Interpolation, respectively.

Algorithm 1 Momentum-based Analytical Learning

Initialize: Training dataset Dt for task t = 1, 2, . . . , T ,
pre-trained model weights θ0, an analytical classification
head (comprised of a random buffer layer fB and a linear
layer fL) and prototype correction network fC.
if task t = 1 then

Initialize an adapter fθ0 .
Update weights θ0 via cross-entropy loss LCE.
Collect expanded feature set XB

1 via Eq. 2.
Compute optimal weights W L

1 via Eq. 4.
Save auto-correlation matrix R1.
Save the prototypes of new classes.

end if
for each task t ∈ {2, . . . , T} do

## Momentum-based Adapter Weight Interpolation
Initialize two adapters fθt and fθ̂ with weights θt−1.
Update weights θt via LCE and weights θ̂ via Eq. 5.
## Knowledge Memorization
Collect expanded feature set XB

t via Eq. 2.
Update auto-correlation matrix Rt via Eq. 10.
Update weights W L

t via Eq. 9.
Save the prototypes of new classes.
## Knowledge Rumination
Train fC via Eq. 11. and correct the old prototypes.
Obtain fine-grained features X̂

fe
o via Eq. 12 and ex-

panded features set X̂
B
o of old classes via Eq. 2.

Update the auto-correlation matrix Rt via Eq. 15.
Update the weight matrix W L

t via Eq. 14.
end for

3. Comparison to Replay-based Methods
In Table 1, we compare MoAL with competitive replay-
based methods (storing 20 instances per class) using the
same PTM. The results are excerpted from [8]. Even with-
out saving instances, MoAL shows substantial improve-
ments on CIFAR-100 and ImageNet-R, outperforming the
best baseline methods by 4.35% and 5.58% on Ā and AT

Table 1. Comparison to traditional replay-based CIL methods.

Method Instances
CIFAR-100 (T = 10) Imagenet-R (T = 10)
Ā AT Ā AT

iCaRL [3] 20 / classes 82.46 73.87 72.96 60.67
DER [6] 20 / classes 86.04 77.93 80.48 74.32

FOSTER [5] 20 / classes 89.87 84.91 81.34 74.48
MEMO [7] 20 / classes 84.08 75.79 74.80 66.62

MoAL 0 94.22 90.49 84.45 79.33

for CIFAR-100, and by 3.11% and 4.85% on Ā and AT for
ImageNet-R, achieving superior results with a clear margin
and further proving its effectiveness.

Figure 2. Confusion matrices of EASE, ACIL, and our MoAL for
five incremental tasks on ImageNet-A.

4. Visual Comparison

To provide a visual comparison, we show the confusion ma-
trix of EASE [8], ACIL [10], and ours on ImageNet-A. As
illustrated in Figure 2, our method (MoAL) demonstrates
a clearer diagonal pattern with reduced off-diagonal noise
compared to EASE and ACIL, indicating higher classifi-
cation accuracy and fewer misclassifications. The confu-
sion matrix of MoAL reflects better stability and adaptabil-
ity across tasks, effectively retaining old class knowledge
while learning new classes. This result highlights MoAL’s
ability to maintain a balance between plasticity and stability,
significantly outperforming the state-of-the-art methods.



Table 2. Comparison of last-task accuracy AT using self-supervised PTMs (on ImageNet-1K) and supervised PTM (on ImageNet-21K).

PTMs DINO- ImageNet-1K [1] iBOT- ImageNet-1K [9] ViT-B/16-IN21K

Methods
ImageNet-A ImageNet-R CUB-200 Stanford Cars ImageNet-A ImageNet-R CUB-200 Stanford Cars CUB-200 Stanford Cars

T = 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5

Finetune 24.95 29.82 60.73 64.68 53.52 65.65 48.08 54.78 28.11 32.39 64.67 68.52 53.10 64.85 44.61 53.22 70.91 78.58 43.52 56.64
ACIL 32.32 40.55 69.30 70.28 73.58 79.01 60.47 61.75 39.83 47.07 72.32 74.07 79.18 81.38 64.73 72.97 88.17 88.25 66.74 76.25
CODA-Prompt 21.66 26.14 53.85 57.87 52.37 62.13 35.49 47.70 16.26 19.29 47.15 56.50 45.93 55.47 31.93 45.69 76.93 84.10 32.67 44.37
LAE 23.37 26.99 56.52 61.37 52.25 63.23 37.78 52.85 23.50 26.73 57.75 64.13 46.69 59.25 26.72 50.97 72.43 77.18 19.69 45.84
DS-AL 30.41 33.31 63.63 65.30 70.40 71.93 51.26 53.14 33.44 35.35 67.27 69.78 71.12 72.65 52.52 54.57 87.66 87.83 55.77 58.67
SimpleCIL 24.16 24.16 45.03 45.03 61.41 61.41 27.37 27.37 24.09 24.09 46.17 46.17 58.86 58.86 22.64 29.87 85.24 85.24 38.26 38.26
APER 28.04 32.78 62.05 64.00 65.9 70.06 30.44 37.56 32.78 40.88 65.12 67.77 66.62 70.82 29.78 41.61 86.01 86.22 45.86 53.51
EASE 34.69 38.64 67.80 69.95 65.18 72.94 39.21 50.98 43.91 45.69 72.15 73.10 67.77 73.92 45.75 54.78 83.12 85.11 37.68 44.76

MoAL (Ours)
36.80 42.53 71.83 73.83 79.69 81.26 64.99 67.59 47.14 51.15 74.77 76.43 80.66 82.70 69.31 76.81 89.27 89.82 69.78 79.35
+2.11 +1.98 +2.53 +3.55 +6.11 +2.25 +4.52 +5.84 +3.23 +4.08 +2.45 +2.36 +1.48 +1.32 +4.58 +3.84 +1.10 +1.57 +3.04 +3.10

Table 3. Detailed plasticity and stability comparison.

Metrics Stability Plasticity

Methods
ImageNet-A CUB-200 ImageNet-A CUB-200

T = 10 5 10 5 10 5 10 5

ACIL 59.91 62.26 88.48 88.41 69.02 69.96 90.14 90.20
LAE 47.39 50.59 72.48 77.12 56.90 59.64 81.52 84.18
DS-AL 52.33 54.76 87.21 86.87 61.22 60.49 91.85 92.00
SimpleCIL 48.96 50.17 85.48 85.31 57.86 56.72 89.86 89.46
APER 55.17 61.28 86.35 86.41 63.30 66.09 90.53 90.25
EASE 50.33 58.31 82.40 84.10 59.61 68.15 91.71 91.60
MoAL (Ours) 64.13 68.91 89.81 89.40 69.24 70.71 92.62 93.88

5. More Results on Different PTM Backbones
and Datasets

Table 2 presents experiments on well-known self-
supervised backbones (DINO [1] and iBOT [9]) pre-trained
on ImageNet-1K, and fine-grained datasets (CUB [4] and
Stanford Cars [2]). MoAL always outperforms others, with
even clearer advantages when the pre-trained and down-
stream datasets are more distinct. These further highlight
the robustness and superiority of our method, emphasizing
the necessity of incrementally improving PTM adaptivity.

6. Detailed Component Analysis

Here, to analyze the effect of different components of our
method, we present a more detailed analysis of plasticity
(average accuracy on new classes) and stability (average
accuracy on old classes). As shown in Figure 1, the re-
sults reveal that knowledge distillation alone leads to a no-
ticeable decline in both plasticity and stability, highlighting
its limitations in improving model adaptability and its ten-
dency to cause knowledge forgetting due to the unfrozen
feature space. In contrast, our weight interpolation mech-
anism significantly enhances both plasticity and stability,
demonstrating superior model adaptability and generaliza-
tion compared to conventional knowledge distillation tech-
niques widely used in CIL. Additionally, the knowledge ru-
mination mechanism further boosts stability, effectively re-
inforcing old knowledge. By combining these components,
MoAL achieves clear advantages over other methods, show-
casing their mutual compatibility and synergistic effects.

Table 4. Ablation study on selective reinforcement.

Metrics Settings
ImageNet-A ImageNet-R

T = 10 5 10 5

Stability Full Reinforcement 63.49 68.93 79.22 81.91
Selective Reinforcement 64.13 68.91 78.70 81.27

Plasticity Full Reinforcement 56.93 60.01 76.58 79.15
Selective Reinforcement 69.24 70.71 85.09 85.16

AT
Full Reinforcement 62.48 64.65 78.12 79.88

Selective Reinforcement 64.06 67.22 79.33 81.38

Ā
Full Reinforcement 72.90 73.32 83.63 84.40

Selective Reinforcement 74.29 75.22 84.45 85.39

7. Plasticity and Stability Comparison
As shown in Table 3, MoAL consistently outperforms exist-
ing methods in both plasticity and stability across all bench-
marks, emphasizing the significance of our contributions.

8. Ablation study on selective reinforcement
In Table 4, we conduct a detailed ablation study using the
ViT-B/16-IN21K model, comparing the performance of se-
lective and full old knowledge reinforcement. In terms of
stability, they yield similar performances, as selective rein-
forcement successfully ruminates the old task knowledge
the model had not learned. However, full reinforcement
harms plasticity due to the over-reinforcement of old knowl-
edge. As a result, selective reinforcement clearly outper-
forms in terms of overall performance on AT and Ā. We
also found that the plasticity loss in the full reinforcement
setting is compensated in future tasks through the rumi-
nation process, allowing it to perform better than existing
works. This further demonstrates the superiority of our pro-
posed knowledge rumination module.

9. Multiple Seeds
In the main paper, we conduct experiments on various
datasets using the random seed 1993. In this section, we
repeat the experiments with different random seeds (1993,
1994, 1995, 1996) and present the accuracy curves of var-
ious methods in Figure 3. The results clearly show that
our method consistently outperforms existing approaches
by significant margins, demonstrating its effectiveness and
robustness across different seed configurations.



Figure 3. The average incremental accuracy Ā(%) curves of various methods and different seeds.

Figure 4. Ablation studies of the adapter projection dimension r.

10. Adapter Projection Dimension
We conduct ablation experiments on the projection dimen-
sion r in the adapter, as shown in Figure 4. The results
on ImageNet-A and ImageNet-R reveal that increasing the
dimension does not always lead to improved performance.
On ImageNet-A, dimensions of 16 and 256 result in de-
creased performance, whereas dimensions of 32, 64, and
128 achieve better performance, albeit with a higher param-
eter count compared to 16. To strike a balance between per-
formance and the number of training parameters, we select
a projection dimension of 64 in our experiments. Moreover,
these results highlight the robustness of MoAL, as it consis-
tently outperforms existing methods even with a projection
dimension as low as 16.
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