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1. Proof of the Theorem 1

Proof. In the main text, at task ¢, we have the learning prob-

lem
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From the definition of the auto-correlation matrix, we
can get the equation
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According to the Woodbury matrix identity, we can com-

plete the proof for the recursive formulation of R; (i.B.
equation 12 in the main text) as
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We can break the estimation 1 into
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the first term the second term

The first term obviously involves the historical data, while
the second term does not. We aim to deal with it with the
weight W,_, of task ¢ — 1. Combing equation 2, we can
rewrite the first term as
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Let Ay = (I + X?Rt,lX?T) , we have
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this, we take advantage of the recursive formulation R; in
equation 2 and rewrite equation 4 into

Based on
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Hence, we can complete the proof and rewrite the esti-
mation 3:
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all historical data task data

< L
At task ¢, we can recursively obtain weight matrix W, us-
ing only current task data, auto-correlation matrix R;_; and
the previous task weight W];_l, the latter two representing
all historical data. O

2. Pseudo Code

We outline the pipeline of our method in Algorithm 1. For
the first task, an adapter is trained with cross-entropy loss,
and knowledge is memorized using the analytical classifica-
tion head via a least squares solution. For subsequent tasks,
one adapter is trained while another is updated through
weight interpolation. Following this, we facilitate the re-
cursive memorization of new task knowledge and introduce
the knowledge rumination mechanism, which refines and
reinforces old knowledge using fine-grained features.
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Figure 1. Detailed comparisons of different components in MoAL. The notations KD, KR, and WI represent Knowledge Distillation,

Knowledge Rumination, and Weight Interpolation, respectively.

Algorithm 1 Momentum-based Analytical Learning

Table 1. Comparison to traditional replay-based CIL methods.

Initialize: Training dataset D, for task t = 1,2,...,7,
pre-trained model weights 6, an analytical classification
head (comprised of a random buffer layer fg and a linear
layer fi) and prototype correction network fc.
if task ¢ = 1 then
Initialize an adapter fo,.
Update weights 6 via cross-entropy loss Lcg.
Collect expanded feature set X 113 via Eq. 2.
Compute optimal weights Wll“ via Eq. 4.
Save auto-correlation matrix R;.
Save the prototypes of new classes.
end if
for each task t € {2,...,T} do
## Momentum-based Adapter Weight Interpolation
Initialize two adapters fg, and f; with weights ;1.
Update weights 6; via Lcg and weights 6 via Eq. 5.
## Knowledge Memorization
Collect expanded feature set X ? via Eq. 2.
Update auto-correlation matrix R; via Eq. 10.
Update weights W% via Eq. 9.
Save the prototypes of new classes.
## Knowledge Rumination
Train fo via Eq. 11. and correct the old prototypes.
Obtain fine-grained features X foe via Eq. 12 and ex-
panded features set X Jj of old classes via Eq. 2.
Update the auto-correlation matrix R; via Eq. 15.

Update the weight matrix WtL via Eq. 14.
end for

3. Comparison to Replay-based Methods

In Table 1, we compare MoAL with competitive replay-
based methods (storing 20 instances per class) using the
same PTM. The results are excerpted from [8]. Even with-
out saving instances, MoAL shows substantial improve-
ments on CIFAR-100 and ImageNet-R, outperforming the
best baseline methods by 4.35% and 5.58% on A and Ay

CIFAR-100 (T = 10)  Imagenet-R (I" = 10)

Method Instances a Ap a Ap
iCaRL [3] 20/ classes  82.46 73.87 72.96 60.67
DER [6] 20/ classes  86.04 77.93 80.48 74.32
FOSTER [5] 20/classes 89.87 84.91 81.34 74.48
MEMO [7]  20/classes 84.08 75.79 74.80 66.62
MoAL 0 94.22 90.49 84.45 79.33

for CIFAR-100, and by 3.11% and 4.85% on A and Ay for
ImageNet-R, achieving superior results with a clear margin
and further proving its effectiveness.
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Figure 2. Confusion matrices of EASE, ACIL, and our MoAL for
five incremental tasks on ImageNet-A.

4. Visual Comparison

To provide a visual comparison, we show the confusion ma-
trix of EASE [8], ACIL [10], and ours on ImageNet-A. As
illustrated in Figure 2, our method (MoAL) demonstrates
a clearer diagonal pattern with reduced off-diagonal noise
compared to EASE and ACIL, indicating higher classifi-
cation accuracy and fewer misclassifications. The confu-
sion matrix of MoAL reflects better stability and adaptabil-
ity across tasks, effectively retaining old class knowledge
while learning new classes. This result highlights MoAL’s
ability to maintain a balance between plasticity and stability,
significantly outperforming the state-of-the-art methods.



Table 2. Comparison of last-task accuracy Ar using self-supervised PTMs (on ImageNet-1K) and supervised PTM (on ImageNet-21K).

PTMs DINO- ImageNet-1K [1] iBOT- ImageNet-1K [9] ViT-B/16-IN21K
Methods ImageNet-A ImageNet-R CUB-200 Stanford Cars ImageNet-A ImageNet-R CUB-200 Stanford Cars CUB-200 Stanford Cars
T=10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5
Finetune 2405 2082 60.73 6468 5352 6565 4808 5478 28.11 3239 6467 6852 5310 6485 4461 5322 7091 7858 4352 56.64
ACIL 3232 4055 6930 7028 7358 7901 6047 6175 39.83 47.07 7232 7407 7918 8138 6473 7297 88.17 8825 6674 7625
CODA-Prompt ~ 21.66 2614 5385 57.87 5237 6213 3549 4770 1626 1929 47.15 5650 4593 5547 3193 4569 7693 8410 3267 4437
LAE 2337 2699 5652 6137 5225 6323 3778 5285 2350 2673 5775 6413 4669 5925 2672 5097 7243 7718 19.69 4584
DS-AL 3041 3331 6363 6530 7040 7193 5126 5314 3344 3535 6727 6978 7112 7265 5252 5457 87.66 87.83 5577 58.67
SimpleCIL 2416 2416 4503 4503 6141 6141 2737 2737 2409 2409 4617 4617 5886 58.86 22.64 2987 8524 8524 3826 3826
APER 2804 3278 6205 6400 659 7006 3044 3756 3278 4088 6512 6777 6662 7082 2978 4161 8601 8622 4586 5351
EASE 3469 3864 6780 6995 6518 7294 3921 5098 4391 4569 7215 73.10 6777 7392 4575 5478 83.12 8511 3768 4476
MoAL (Oursy  J680 4233 TI83 7383 7969 8126 6499 6759 4714 SLIS 7477 7643 8066 8270 6931 7681 8927 8§82 978 7938
4211 +198 4253 4355 4611 4225 +452 4584 4323 +408 +245 4236 +148 4132 +458 +384 4110 +157 +3.04 +3.10
Table 3. Detailed plasticity and stability comparison. Table 4. Ablation study on selective reinforcement.
Metrics Stability Plasticity . 3 ImageNet-A ImageNet-R
777777777777777777777777777777777777777777 Metrics Settings
Methods ImageNet-A CUB-200 ImageNet-A ¢vB200 7 T,:,lg e El o 1 707 o § -
T =10 5 10 5 10 5 10 5 - Full Reinforcement 63.49 68.93 79.22 8191
ACIL 5001 6226 8348 8841 69.02 6996 90.14 90.20 Stability ¢ 1 ive Reinforcement 6413 68.91 7870 81.27
LAE 4739 5059 7248 7712 5690 59.64 8152 8418 0 - - - - - - - - e = = e T T T e T Ao R
DS-AL 5233 5476 8721 8687 6122 6049 91.85 92.00 Plasticity Fu”. Remf.or.cemem 56.93  60.01 76.58 = 79.15
SimpleCIL 4896  50.17 8548 8531 5786 5672 8986 8946 - _ __ __ __ Selective Reinforcement 6924 _ 70.71 _ 85.09 8516
APER 5517 6128 8635 8641 6330 6609 9053 90.25 Ar Full Reinforcement 6248 6465 7812 79.88
EASE 5033 5831 8240 8410 59.61 6815 9171 91.60 Selective Reinforcement ~ 64.06  67.22  79.33  81.38
MoAL (Ours)  64.13  68.91 89.81 89.40 69.24 70.71 92.62 93.88 _ Full Reinforcement 7290 7332 83.63 84.40
A Selective Reinforcement ~ 74.29 75.22 8445 85.39

5. More Results on Different PTM Backbones
and Datasets

Table 2 presents experiments on well-known self-
supervised backbones (DINO [1] and iBOT [9]) pre-trained
on ImageNet-1K, and fine-grained datasets (CUB [4] and
Stanford Cars [2]). MoAL always outperforms others, with
even clearer advantages when the pre-trained and down-
stream datasets are more distinct. These further highlight
the robustness and superiority of our method, emphasizing
the necessity of incrementally improving PTM adaptivity.

6. Detailed Component Analysis

Here, to analyze the effect of different components of our
method, we present a more detailed analysis of plasticity
(average accuracy on new classes) and stability (average
accuracy on old classes). As shown in Figure 1, the re-
sults reveal that knowledge distillation alone leads to a no-
ticeable decline in both plasticity and stability, highlighting
its limitations in improving model adaptability and its ten-
dency to cause knowledge forgetting due to the unfrozen
feature space. In contrast, our weight interpolation mech-
anism significantly enhances both plasticity and stability,
demonstrating superior model adaptability and generaliza-
tion compared to conventional knowledge distillation tech-
niques widely used in CIL. Additionally, the knowledge ru-
mination mechanism further boosts stability, effectively re-
inforcing old knowledge. By combining these components,
MoAL achieves clear advantages over other methods, show-
casing their mutual compatibility and synergistic effects.

7. Plasticity and Stability Comparison

As shown in Table 3, MoAL consistently outperforms exist-
ing methods in both plasticity and stability across all bench-
marks, emphasizing the significance of our contributions.

8. Ablation study on selective reinforcement

In Table 4, we conduct a detailed ablation study using the
ViT-B/16-IN21K model, comparing the performance of se-
lective and full old knowledge reinforcement. In terms of
stability, they yield similar performances, as selective rein-
forcement successfully ruminates the old task knowledge
the model had not learned. However, full reinforcement
harms plasticity due to the over-reinforcement of old knowl-
edge. As a result, selective reinforcement clearly outper-
forms in terms of overall performance on A and A. We
also found that the plasticity loss in the full reinforcement
setting is compensated in future tasks through the rumi-
nation process, allowing it to perform better than existing
works. This further demonstrates the superiority of our pro-
posed knowledge rumination module.

9. Multiple Seeds

In the main paper, we conduct experiments on various
datasets using the random seed 1993. In this section, we
repeat the experiments with different random seeds (1993,
1994, 1995, 1996) and present the accuracy curves of var-
ious methods in Figure 3. The results clearly show that
our method consistently outperforms existing approaches
by significant margins, demonstrating its effectiveness and
robustness across different seed configurations.
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Figure 3. The average incremental accuracy A(%) curves of various methods and different seeds.
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