
Mani-GS: Gaussian Splatting Manipulation with Triangular Mesh

Supplementary Material

Overview. The supplementary material has the follow-
ing contents:

• More visual results
• Efficiency Analysis
• Implementation Details

A. More Visual Results

Demo Video. In order to further demonstrate the effec-
tiveness of our methods, we have provided additional vi-
sual videos showcasing large deformation, soft body sim-
ulation, and local manipulation. These videos can be ac-
cessed through project page.
Soft Body Simulation. In addition to the visual results pre-
sented in the main paper, we also provide the geometry after
simulation and rendering at different viewpoints in Figure 9.
To improve the speed of the mesh simulation, we decimated
the original mesh from 300K to 35K triangles. While this
may result in some decrease in rendering quality due to the
reduced number of triangles as well as Gaussians, it was
necessary to ensure reasonable simulation speed.

Figure 9. Visual results of softbody simulation at different view-
points. The left column displays the geometry after simulation,
while the right three columns showcase the rendering results from
three different viewpoints.

More real case. We have also presented more manipula-
tion results of real scenes in Figure 10. The top three im-
ages are from the DTU dataset, while the bottom two are
from the Tanks and Templates dataset. Images within the
dotted black rectangles are before manipulation, whereas
those marked with red arrows or rectangles are after ma-
nipulation. The manipulation results presented in Figure
10 demonstrate that our approach can successfully transfer
mesh manipulation to Gaussian-Splatting, resulting in ac-
curate and visually appealing results.

Figure 10. Manipulation rendering results on real object dataset.
To highlight the deformed area, we have enclosed it within a red
rectangle.

Table 4. Efficiency Analysis

N=4 N=3 N=1 N=1 N=1
Triangles(K) 270 270 270 150 70
Points(K) 1080 810 270 150 70
Training (min) 16 13 7 5.5 4.5
Speed (FPS) 244 300 452 571 572
PSNR 36.36 36.39 36.27 35.86 34.52

B. Efficiency Analysis

The efficiency of 3DGS Binding training and rendering
speed depends on the number of Gaussians, which is the
product of the triangle number T and the Gaussians number
for each triangle N . In Table 4, We first fixed T and tested
different values of N . Our results indicate that N=3 leads to
the best rendering quality while keeping a competitive ren-
dering speed. When N = 1, the PSNR slightly decreased
with a faster training and rendering speed.

We also evaluated the impact of underlying mesh resolu-
tion by testing meshes with different triangles (270K, 150K,
70K). As shown in Table 4, the rendering quality decreases
while efficiency improves with decreasing mesh resolution.

Regarding the editing time, it primarily depends on the
time cost of mesh editing. We use Blender for mesh edit-
ing, and in our experience, local manipulation and large
deformation can be achieved instantly. Soft body simulation
can be a more time-consuming process, as it depends on the
simulation algorithm employed in Blender.



C. Implementation Details

C.1 Training Details of Mesh Extraction Stage

As outlined in our main paper, the first stage of our approach
involves mesh extraction. While we utilize the NeuS[36]
mesh as the foundation for binding Gaussians, we also ex-
plore extracting mesh from Gaussian-Splatting.

In this work, we try to extract triangular mesh using the
Screened Poisson surface reconstruction [18] method from
a trained Gaussian-Splatting model. We incorporate a nor-
mal attribute n for each 3D Gaussian and optimize the nor-
mal attribute with the pseudo-normal constraint.

The normal consistency is quantified as follows:

Ln = kN � Ñk2. (8)

where N is the rendered-normal map, Ñ is the pseudo-
normal map computed from rendered depth map.

Besides the normal constraint Ln, the ordinary L1 Loss
and Structural Similarity Index (SSIM) loss are also incor-
porated into optimization by comparing the rendered im-
age C with the observed image Cgt. To address the issue
of unwarranted 3D Gaussians in the background region, we
employ a mask cross-entropy loss. This loss is defined as
follows:

Lmask = �Bm logB � (1�Bm) log (1�B), (9)

where Bm denotes the object mask and B denotes the ac-
cumulated transmittance B =

P
i2N Ti↵i.

Then all the loss terms can be summarized as follows:

Lstage1 = �1L1 + �2LSSIM + �3Ln + �4Lmask, (10)

where �1 = 1,�2 = 0.2,�3 = 0.01,�4 = 0.1. We
train this stage for 30K steps with adaptive density control,
which is executed at every 500 iterations within the speci-
fied range from iteration 500 to 10K. Once the training stage
is complete, we proceed with Screened Poisson surface re-
construction using the positions and normals of the Gaus-
sians as input. The mesh extraction process takes less than
1 minute to complete.

In addition to mesh extraction, we also utilize Gaussian-
Splatting Marching-Cube to extract the triangular mesh.
Our approach involves sampling a grid with a resolution of
256 ⇥ 256 ⇥ 256. For each sampling point, we identify its
nearest Gaussian points. Sampling points that have the near-
est Gaussians within a pre-defined distance threshold ⌧ are
assigned a density value of 1, while those that do not meet
the threshold are assigned a density value of 0. ⌧ is set to
0.01 in practice. The density threshold for Marching-Cube
is set to 1e-4.

Based on the visual comparison, the overall mesh quality
can be ranked as follows: NeuS > Poisson Reconstruction
> Marching-Cube.

C.2 Training Details of Gaussian-Binding Stage

To ensure an accurate representation of each triangle, we
bind N Gaussians to it. Prior to training, we initialize the
positions of the Gaussians on the attached triangle. The
N initialized position is calculated using a barycentric co-
ordinate, with a predefined barycentric coordinate set of
[1/2, 1/4, 1/4], [1/4, 1/2, 1/4], [1/4, 1/4, 1/2]. For the
hyper-parameter � mentioned in main paper equation (8),
we set � = 10 in most cases, � = 100 in Materials.

In the Gaussian-Binding stage, we don’t perform adap-
tive control because we find it doesn’t influence the final
performance. We also train 300K iterations in this stage
with L1 loss, SSIM loss, and mask entropy loss. The over-
all loss in this can be summarized as follows:

Lstage2 = �1L1 + �2LSSIM + �3Lmask, (11)

where �1 = 1,�2 = 0.2,�3 = 0.1.


