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Supplementary Material

In this supplementary document, we provide additional
details about MeshArt. In Sec. 7, we give more implementa-
tion details of our method and loss functions. We elaborate
our data annotation process in Sec. 8. We also include ad-
ditional quantitative comparisons in Sec. 9. We encourage
readers to watch the supplemental video to see more articu-
lated object generations in action.

7. Method Details
We use VQVAEs to model both part articulations and mesh
geometries for our hierarchical transformers. Our structure
VQVAE encodes extra part-level features (e.g., semantics,
geometry feature, and articulation joint), alongside vertex
locations, into a compact latent space for articulation-aware
structure generation, while our geometry VQVAE predicts
additional junction face probabilities for coherent part mesh
generation.

7.1. Structure VQ-VAE

The structure VQ-VAE encodes and quantizes features of
bounding box triangles to learn a structured embedding
space for articulated object structures. We construct a graph
for the triangles by treating each triangle face as a node and
connecting neighboring faces with undirected edges. The
input node features include positionally encoded triangle
coordinates, face area, edge angles, and face normal vec-
tors. These features are concatenated with part semantic,
geometry, and articulation attributes projected onto the tri-
angle nodes. The combined features are processed through
4 SAGEConv [1] graph convolutional layers, extracting a
feature vector of dimension 768 for each triangle.

At the bottleneck, these embeddings are quantized using
a codebook of size 8192, enabling a compact representation
of the structure. The decoder reconstructs triangle locations
by predicting the logits of discretized coordinates, where
both triangle and joint locations are mapped to a uniform
grid of size 1283.

Instead of directly predicting a discrete part semantic la-
bel, the structure VQ-VAE decoder regresses a continuous
semantic feature vector from CLIP. The class label is then
determined by computing the cosine similarity between the
predicted feature vector and the CLIP features of a prede-
fined set of part labels.

The decoder will output a set of joint information per
triangle. To obtain a single set of joint predictions per part,
the outputs are averaged across all triangles within the part.

This architecture effectively learns quantized embed-
dings for articulated object structures. These embeddings

serve as the basis for the structure transformer, enabling the
autoregressive generation of object structures with articula-
tions.
Loss Functions. As the triangle coordinates and joint loca-
tions are discretized, their reconstruction loss can be formu-
lated as a cross-entropy loss:

Lrecon =

N∑
n=1

128∑
k=1

logPk, (5)

with n being the face index and Pk representing the pre-
dicted probability distribution over the coordinate bins. For
part i, its semantic feature li and geometry feature gi are
supervised using L2 regression loss:

Lregression = ||yi − ŷi||2, (6)

with yi, ŷi being the ground truth and predicted feature vec-
tors.

7.2. Structure Transformer

We use a decoder-only transformer that has a standard GPT-
2 architecture, i.e., 12 multi-headed self-attention layers, 12
heads, 768 as feature width, with a context length of 4608.
The transformer is trained with cross-entropy loss for next-
token index prediction.

7.3. Geometry VQ-VAE

The Geometry VQ-VAE encodes mesh triangle features us-
ing an architecture similar to the Structure VQ-VAE. Input
triangle features, such as positional encoding, normals, and
edge attributes, are processed through 4 SAGEConv [1] lay-
ers to extract feature embeddings of dimension 768. These
embeddings are quantized at the bottleneck using a vector
quantization module with codebook size of 16384, enabling
compact and efficient representation.

The 1D-ResNet decoder reconstructs the discretized tri-
angle coordinates by minimizing a cross-entropy loss over
a uniform grid. To enforce spatial and structural coherence
between parts, the geometry decoder includes an additional
channel that predicts the probability of each triangle being
a junction triangle, i.e., triangles at the near boundary be-
tween adjacent parts. This prediction is supervised with a
binary classification loss.

By incorporating junction triangle prediction, the Ge-
ometry VQ-VAE not only reconstructs accurate triangle
meshes of the target part, but also learns the connectivity
information cross parts, supporting smooth articulation and
consistent geometry generation.



8. Data Annotation

To effectively learn the distribution of articulated objects,
we extend PartNet [4], the largest dataset with object part
annotations, by augmenting it with joint information. This
augmentation significantly increases the diversity of artic-
ulated objects compared to the commonly used PartNet-
Mobility [7].

Part Canonicalization. To ensure consistent and mean-
ingful articulation properties, we canonicalize joint anno-
tations. For prismatic joints, all locations are set to the ori-
gin of the object’s coordinate system. For revolute joints,
we address inconsistencies in part orientations, for instance,
chair wheels often have arbitrary orientations in the original
dataset, resulting in misaligned revolute joints. To canoni-
calize these, we rotate each wheel around its vertical axis to
align their orientations consistently, as shown in Fig. 7.

Joint Location Generation. For storage furniture and ta-
bles, revolute joints are typically located at the “hinge” of
an articulated part, often corresponding to one of the four
bounding box sides of the part. To automate this process,
we generate four hypotheses for joint locations based on
the bounding box configuration of the articulated part. An
interactive viewer is then used to select the most reasonable
joint location, as illustrated in Fig. 8.

Original Data Canonicalized Data

Figure 7. We canonicalize the orientation of different articulated
parts for consistent joint annotation.

Figure 8. Given a target part, our viewer visualizes the generated
joint hypotheses for selection.

Class Method COV↑ MMD↓ 1-NNA FID↓ KID↓

Chair

NAP [2] 20.9 5.4 97.3 212.6 0.207
MeshGPT [6] 34.5 4.2 81.8 24.0 0.011

MeshArt 27.3 3.8 85.8 23.8 0.013

Table

NAP [2] 20.0 5.8 96.5 243.8 0.231
MeshGPT [6] 43.0 2.9 69.9 14.5 0.005

MeshArt 33.4 2.8 77.9 15.1 0.007

Storage
Furniture

NAP [2] 25.3 2.9 92.4 162.4 0.142
MeshGPT [6] 38.7 2.3 81.6 9.3 0.002

MeshArt 40.9 2.0 78.7 8.6 0.003

Table 6. Quantitative comparison on the task of unconditional
mesh generation on a subset of categories from the PartNet [4]
dataset. MMD values are multiplied by 103. We evaluate the
mesh quality at the resting state for all methods. We outperform
the baselines in shape quality, visuals, and compactness metrics.
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Figure 9. Our method can generate sharp geometry and realistic
articulations for microwaves.

Joint Verification. To validate the joint annotations, we
render the object at various articulation states and visually
inspect the plausibility of the generated motions. This step
ensures the accuracy of joint locations and their associated
articulation properties, providing high-quality annotations
for articulated objects.

9. Additional Results

Quantitative Comparison at Resting State. We compare
the mesh generation quality of our method with NAP [2],
and the state-of-the-art direct mesh generation approach,
MeshGPT [6]. Since MeshGPT does not predict object part
and articulation information, the evaluation is performed
on generated meshes in their canonical resting state. As
shown in Tab. 6, we also achieve comparable COV scores to
MeshGPT while outperforming the MMD score, indicating
higher fidelity in the generated shapes. Notably, our method
shows significant mesh generation improvement over NAP
on all metrics.

Additional Categories. We show additional results on mi-
crowaves in Fig. 9.
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Figure 10. Conditional Generation. Articulated structures and geometry are generated conditioned on point clouds or sketches.
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Figure 11. Visual comparison with CAGE. Our method can gen-
erate coherent shapes with sharp geometry.

Qualitative Comparison with CAGE. We compare Me-
shArt with CAGE [3], which retrieves part geometry based
on conditionally generated articulated structures. As shown
in Fig. 11, our method achieves coherent shape synthesis
while achieving sharp geometry details, avoiding undesired
part collision and inconsistencies between parts.

Conditional Generation. MeshArt can generate articu-
lated structure and geometry conditioned on point clouds or
sketch images. We extract input features using Michelan-
gelo [8] for 3D point clouds and Radio [5] for sketches.

A linear layer projects these features to match the struc-
ture transformer Φs’s feature space, appending them to the
beginning of the structure sequence. The transformer Φs

then learns to generate articulation-aware structure bound-
ing boxes. Since the structure codebook Cs remains fixed,
the geometry transformer Φg requires no finetuning. As
shown in Fig. 10, given the 3D/2D conditions, our method
can generate plausible articulated structures, which then
guide faithful synthesis of part geometry.
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