Multiple Object Tracking as ID Prediction

Supplementary Material

A. Overview

In the supplementary material, we primarily:

1. State more experimental details, in Appendix B.

2. Discuss concerns regarding the introduction of static im-
ages for joint training, in Appendix C.

3. Provide additional experimental and visualization re-
sults, in Appendix D.

B. Experimental Details

Due to space constraints in the main text, we could not pro-
vide a comprehensive account of all experimental details.
In this section, we will describe the specific details related
to the training (Appendix B.1), inference (Appendix B.2),
and ablation experiments (Appendix B.3).

B.1. Training

Settings. In each training iteration, we need to sample
T + 1 frames, as mentioned in Sec. 4.2. Similar to pre-
vious works [8, 31, 35] that employ multi-frame training,
we adopt random sampling intervals to enhance the diver-
sity of training data. However, continuously increasing the
sampling interval may make training samples excessively
challenging. This could cause a discrepancy between train-
ing data and the inference video sequences, ultimately ad-
versely affecting the model’s performance. In our experi-
ments, we set the random sampling interval to range from 1
to 4 by default.

For the final training strategies, we have chosen the fol-
lowing approaches: On DanceTrack [28], we train MOTIP
for 10 epochs on the train set and drop the learning rate by a
factor of 10 at the 5-th and 9-th epoch. On SportsMOT [6],
we train our model for 13 epochs on the train set and drop
the learning rate by a factor of 10 at the 8-th and 12-th
epoch. On BFT [40], we train the model for 22 epochs
while drop the learning rate at the 16-th and 20-th epoch. To
expedite the convergence, we use COCO [14] pre-trained
weights and perform detection pre-training on the corre-
sponding datasets. This serves as the initialization for the
DETR part of MOTIP. Our typical hardware setup involves
8 NVIDIA RTX 4090 GPUs, with the batch size of each
GPU set to 1.

Parallelization. Recent tracking-by-query methods [8, 31,
35], which also use DETRs as their frameworks, process
multi-frame video sequences in a manner similar to RNNs
during training. For instance, when processing a five-
frame video clip, the model needs to perform five sequen-
tial forward passes of the DETR component, one frame at
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Figure 1. Illustration of the parallelized training of MOTIP, us-
ing a five-frame demo. Since the detection process for each frame
is independent, all DETRs in a sequence can perform forward si-
multaneously, which is GPU-friendly. In our implementation, we
divide all DETRs into two forward passes (as shown in numbers 1
and 2) since we only backpropagate gradients for a subset of them,
as described in Sec. 4.2.

#N - detected objects in the current frame

# K - the capacity of the ID dictionary

# id_scores [N, K+1]

# confidence of N objects in the current frame
# on K+1 different ID 1a

# the first K ones represent normal IDs

# newborn

# the last one represents
tracked_ids M, 1,

# previously tracked ID labels

# - minimum acceptable ID confidence score.

# Step 1: get the candidate ID label and score of each target
object_max_scores, object_id_labels = torch.max(id_scores, dim=1)

# Step 2: get the max score of each candidate ID label
id_max_scores = dict()
for score, id in zip(object_max_scores, object_id_labels):
if id = K + 1: # except the ‘newborn’ token
if id not in id_max_scores:
id_max_scores[id] = score
else:

id_max_scores[id] = max(id_max_scores[id], score)
# Step 3: output the final ID assignment results (without duplication)
final_ids = 1list() # will be a N-length list at the end of the code

for i in range(len(object_max_scores)):
score, id = object_max_scores[i], object_id_labels[i]
if id not in tracked_ids:

final_ids.append(K + 1) # not in the tracked IDs, is newborn
elif score < score_thresh:

final_ids.append(K + 1) # not exceed the threshold, is newborn
elif score < id_max_scores[id]:

final_ids.append(K + 1) # not the highest-score one, is newborn
else:

final_ids.append(id) # normal case, accept this ID

# final_ids is the final results of the ID assignment process

Figure 2. Python-like pseudocode for the core of our ID assign-
ment process.

a time. Since the DETR architecture accounts for the ma-
jority of computational cost, this processing approach fails
to leverage the parallel processing capabilities of the GPU.
In contrast, our MOTIP decouples detection and associa-
tion components, allowing it to detect targets in all frames
at once during training, as illustrated in Fig. 1. Meanwhile,
since our ID Decoder is a transformer decoder structure,
it can also achieve parallelism by leveraging the attention
masks [29]. Therefore, our method can attain high paral-
lelism on the GPU during training, improving GPU utiliza-
tion and enabling efficient training.
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Figure 3. Visualizing the different annotation standards between SportsMOT [6] and CrowdHuman [27]. (a) In SportsMOT, only
athletes are annotated, excluding referees and spectators, or any other people. (b) Since CrowdHuman aims to detect all humans, it

additionally includes annotations for crowds outside the sports venues, as shown by the area covered in the red mask .

B.2. Inference

As discussed in Sec. 3.4, during inference, we utilize a
straightforward ID assignment strategy. We apply an ap-
proach similar to classification tasks, selecting the predic-
tion with the highest confidence score for each object as the
final accepted result. This simplifies our inference process,
eliminating the need for more intricate allocation strategies.
Although this approach seems feasible, most tracking eval-
uation approaches [1, 17, 25] cannot handle duplicate IDs
within the same frame. Therefore, we need to introduce an
additional rule to handle this situation: when duplicate IDs
appear in the final results, we select the one with the high-
est confidence and label the others as newborn objects. This
simple patch completely avoids the occurrence of duplicate
ID labels within the same frame. The pseudocode for the
aforementioned assignment process is provided in Fig. 2.

B.3. Ablation Studies

Default Settings. As stated in Sec. 4.4, we train the mod-
els on the train set of DanceTrack [28] and subsequently
evaluate on its official validation set to conduct our ablation
experiments. Unless otherwise stated, all experiments are
implemented without using trajectory augmentation tech-
niques to ensure a fair comparison, i.e., Apce = Asw = 0.0.
To reduce the computational cost, we shortened the sam-
pling length of the video sequence to 7' = 19. As for the
inference, we leverage Ay = Aoy = 0.5, while A;; = 0.1
for simplicity. Other unspecified details are consistent with
the default setups, as referenced in Sec. 4.2, Appendix B.1
and Appendix B.2.

Re-ID Pipeline. As shown in Tab. 5, we construct a re-
id pipeline to compare with our in-context ID prediction
approach. During the training process, we refer to Fair-
MOT [36], a well-known joint detection and embedding
method. Interestingly, it also utilized the cross-entropy

function for supervision. This similarity undoubtedly pro-
vides a suitable competitor for our method. In practice, we
treat each trajectory as a class and assign it a unique ID
label that remained consistent throughout the entire train-
ing process. After obtaining the output embeddings from
the model, we employ a linear projection as the classifi-
cation head and use the corresponding ID labels to super-
vise the classification results of the targets. Although both
approaches use classification supervision, our procedures
for defining ID labels differ significantly, as discussed in
Sec. 3.1. During inference, the re-id pipeline applies cosine
similarity to calculate the cost matrix for ID assignment,
which is a widely adopted strategy in RelD-based meth-
ods [18, 33, 36].

Contra Pipeline. Inspired by contrastive learning methods
like CLIP [24], recent work [22] has employed contrastive
learning to supervise the object embeddings of different tra-
jectories, aiming to learn distinguishable features. There-
fore, we employ the infoNCE loss [22, 24] to supervise the
model as a comparative method, which is denoted as contra
pipeline in Tab. 5. In experiments, we also tune some hyper-
parameters to improve the performance (about 3.0 HOTA)
for a thorough comparison. During inference, we also use
the cosine similarity matrix. In the above two comparative
pipelines, we observe that the tracking performance is sim-
ilar when the similarity threshold is below 0.5. Therefore,
we retain the similarity threshold at 0.1 in our ablation ex-
periments for simplicity.

One-Stage and Two-Stage Training In Tab. 5, we establish
two different training strategies: one-stage and two-stage.
The former uses a combined loss function to supervise the
entire network, like Eq. (3). In contrast, two-stage train-
ing divides the model into two sequentially trained parts.
First, the DETR component is trained using detection su-
pervision. Then, the trained weights are frozen, and the ob-
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Figure 4. Illustrate the inconsistent scenario characteristics from different datasets. (a) humans in high-density scenarios from
CrowdHuman [27]. (b) DanceTrack [28] aims to track indoor dancers. (c) SportsMOT [6] is chiefly concerned with the tracking of sports

events.
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(b) A simulated video sequence is generated by sampling regions through a random shift technique [35] from a static image (in CrowdHuman [27]).
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(a) A real-world video sequence, which is directly sampled from DanceTrack [28].
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Figure 5. Illustrating two distinct approaches of video sequence acquisition: real-world vs. simulated sequences. The latter is tantamount
to transform the objects by mere translational and scaling transformations, which intuitively seems overly simplistic for a tracking model.

ject association part is trained separately. This two-stage
training ensures the consistency of the object embeddings
produced by DETR, thereby providing a fair testbed for the
three different pipelines.

C. Rethinking Joint Training with Images

Some recent work [0, 31, 34, 38] has opted to use addi-
tional image detection datasets, such as CrowdHuman [27],
for joint training. For methods [31, 34, 38] requiring multi-
frame training, they commonly use random shifting to sim-
ulate short video clips from single images to meet the train-
ing requirements. While this kind of joint training can in-
deed improve tracking performance, we argue it hinders the
sustained advancement of MOT methods, particularly for
end-to-end models that focus on temporal information. The
main impacts are concentrated in three areas: inconsistent
scene characteristics (Appendix C.1), inconsistent annota-
tion standards (Appendix C.2), and overly simplistic video
simulations (Appendix C.3).

C.1. Inconsistent Scenario Characteristics

As discussed in Sec. 3.1 of CrowdHuman [27], this dataset
aims to be diverse for real-world scenarios. To this end,
various different keywords were used to collect data from
Google Image search. In contrast, existing MOT bench-
marks [6, 20, 28] predominantly focus on specific sce-
narios. For instance, SportsMOT [6] primarily collects
high-quality videos from professional sports events, while
DanceTrack [28] crawls network videos, including mostly
group dancing. Consequently, in CrowdHuman, some
scenes may never appear in specific MOT datasets. As il-
lustrated in Fig. 4, some crowded scenes of CrowdHuman
are virtually absent in both DanceTrack and SportsMOT.
Additionally, the CrowdHuman dataset also encompasses
some scenes under atypical low-light conditions and wide-
angle lens perspectives, which significantly deviate from
the distribution of the target datasets, like DanceTrack and
SportsMOT.

Although the inconsistencies across these scenarios did
not adversely impact the performance on target benchmarks
yet, there are still some concerns based on common con-



sensus in deep learning training. Using out-of-domain data
is inherently a double-edged sword. While it can boost
performance, it may also cause the model astray from its
intended application scenarios. This typically calls for a
careful adjustment of the training data ratio during train-
ing to maintain this delicate balance. We argue this would
lead researchers to spend an excessive amount of unneces-
sary effort on tuning the hyperparameters required for train-
ing. While additional detection datasets are still necessary
for some traditional, smaller datasets (like MOT15 [10],
MOT17 [20]), many recently proposed benchmarks already
contain sufficient training data to fully unlock the potential
of most models. Introducing extra image data, in this case,
would be redundant.

C.2. Inconsistent Annotation Standards

Across different datasets, even if the category labels seem
the same, the focal points may vary. A notable exam-
ple is the distinction between the CrowdHuman [27] and
SportsMOT [6] datasets. CrowdHuman aims to detect ev-
ery visible person in the images, whereas SportsMOT fo-
cuses solely on the athletes in the videos. This results in
differences in the annotation protocols between these two
datasets. As illustrated in Fig. 3, compared to SportsMOT,
CrowdHuman includes additional annotations for spectators
and referees in sports scenes. Using these two datasets for
joint training can confuse the model because of the dif-
ferent annotation standards. Specifically, it becomes un-
clear if people who are not athletes should be considered
as positive detections, thereby impairing the final perfor-
mance. Some more sophisticated engineering designs have
been used to address this issue. For example, MixSort [6]
employs different combinations of training data at multi-
ple stages and finally performs fine-tuning exclusively on
SportsMOT. However, the optimal joint training strategy
can vary for different models while dealing with this is-
sue. We argue that customizing multi-stage joint training
strategies would divert researchers’ efforts toward engineer-
ing tricks rather than general tracking solutions. Therefore,
we believe that when the amount of training data is suffi-
cient to validate the effectiveness of the method, there is no
need to introduce additional training data. This helps avoid
the complexity of adjusting training strategies.

C.3. Simplistic Video Simulations

Recent research [8, 26, 35] has demonstrated that multi-
frame training is highly beneficial for developing a more ro-
bust tracking model. When incorporating detection datasets
like CrowdHuman [27] for joint training, random shifting is
employed to sample different regions of the same image to
generate video clips. For each target, this is equivalent to
continuously applying a translation and scaling operation at
a constant ratio, as shown in Fig. 5b. The resulting sequence

will have very small differences between frames, lacking
features such as deformation, occlusion, and changes in rel-
ative position that are present in real-world sequences (as
shown in Fig. 5a). This phenomenon becomes more pro-
nounced as the sampling length increases. Because the us-
able area of the static image remains constant, the shift-
ing scale of each step must be reduced to ensure valid-
ity, making adjacent frames even more similar. Recent
work [7, 8, 26, 35] has increasingly focused on the applica-
tion of temporal information in tracking and has benefited
from long-term sequence training. However, the overly sim-
plistic method of video simulation can contaminate the dis-
tribution of training data, thereby severely impairing model
performance. This might impede researchers from delving
deeper into the exploration of temporal information. While
more complex and diverse video simulation approaches can
help alleviate this issue, this goes beyond the scope of gen-
eral MOT methods. For more details, you can refer to some
related studies [11-13].

C.4. Discussions

Our MOTIP is an end-to-end learnable approach, which en-
counters additional challenges during joint training, as dis-
cussed in Appendix C.1 and Appendix C.2. Additionally,
we utilize long-sequence training to handle temporal infor-
mation, which means that video data generated through im-
age simulation does not sufficiently benefit our model, as
discussed in Appendix C.3. For example, during joint train-
ing of SportsMOT [6] and CrowdHuman [27], single-stage
training can cause issues for the detector due to annota-
tion inconsistencies. On the other hand, multi-stage train-
ing struggles to address the problem of model forgetting.
This challenge is not unique to our model. As the computer
vision community evolves, more end-to-end and long-term
modeling approaches will become available for multi-object
tracking. Complex joint training might shift the focus to-
wards engineering implementations rather than the research
of more generalized tracking methods. Therefore, we sug-
gest that when the dataset is sufficiently large, it may be
preferable to avoid introducing extra data for training. This
approach allows for a more focused effort on addressing the
various challenges in multiple object tracking.

D. More Results

D.1. MOT17

Although MOT17 [20] is widely recognized as an impor-
tant pedestrian tracking dataset, its limited amount of train-
ing data has been noted by many works [8, 26] to be in-
adequate for training modern models, especially end-to-end
approaches. Since it only contains 7 video sequences for
training, current methods [35, 37] always incorporate extra
detection datasets [10, 27] for joint training to ensure data



Methods ‘HOTA DetA AssA MOTA IDF1

heuristic:
CenterTrack [41] | 52.2 538 51.0 67.8 64.7
QDTrack [21] 539 556 527 687 663
GTR [42] 59.1 61.6 57.0 753 715
FairMOT [36] 59.3 609 58.0 737 723
DeepSORT [30] 612 63.1 597 780 745

SORT [2] 63.0 642 622 80.1 782
ByteTrack [37] 63.1 645 620 803 773
OC-SORT [4] 632 632 634 780 775
C-BloU [32] 64.1 648 63.7 81.1 79.7
MotionTrack [23] | 65.1 654 65.1 81.1 80.1
end-to-end:

TrackFormer [19] / / / 74.1  68.0
MeMOT [3] 56.9 / 552 725 69.0
MOTR [35] 572 589 558 719 684
MOTRv2' [38] 576 58.1 575 70.1 703
MeMOTR [8] 588 596 584 728 715
MOTIP (ours) 593 62.0 57.0 753 713

CO-MOT [31] 60.1 595 606 726 727
MOTRv3 [34] 60.2 620 569 755 712

Table 1. Performance comparison with state-of-the-art methods on
MOT17 [20]. The best performance among the end-to-end meth-
ods is marked in bold. The results shown in gray font indicate
unfair comparisons due to network structure, as we detailed in Ap-
pendix D.1. MOTRV2' refers to the results of MOTRv?2 [38] after
removing additional heuristic post-processing algorithms, as de-
rived from [34].

diversity. Nonetheless, some studies [8] have shown that
the lack of diversity makes models prone to overfitting on
training data, resulting in insufficient generalization capa-
bilities. Under the same settings, end-to-end methods face
more severe problems compared to heuristic algorithms,
because additional datasets are insufficient for models to
learn optimal tracking strategies, as we discussed in Ap-
pendix C.3. We argue these compromises and issues might
divert research from fundamental tracking solutions, caus-
ing an overemphasis on engineering details. For this rea-
son, we chose some more modern and diverse datasets in
our main text, such as DanceTrack [28], SportsMOT [6],
and BFT [40], to ensure the model is well-trained.
Nevertheless, we still present the state-of-the-art com-
parison on MOT17 [20] in Tab. 1. To handle crowded
scenes, we modify several hyperparameters, such as setting
the capacity of the ID dictionary (K) to 200. Compared
to MOTR [35], which also uses the standard Deformable
DETR framework, our MOTIP shows a significant perfor-
mance improvement (59.3 HOTA vs. 57.2 HOTA). It should
be noted that some of the methods (in gray font) in Tab. 1
are not a fair comparison with ours: MeMOTR [8] uses

Methods | FP32 | FP16

MOTR [35] 13.1 FPS /
MOTIP (ours) | 12.7 FPS | 22.8 FPS

Table 2. Comparison of inference speed. The experiments are
conducted on a single NVIDIA RTX A5000 GPU. Using FP16
precision, MOTIP can achieve near real-time performance.

DAB-Deformable DETR [15] as the framework, while CO-
MOT [31] customizes the reference points in Deformable
DETR. MOTRv2! employs an additional YOLOX detec-
tor [9] as the proposal generator. MOTRv3 utilizes a more
powerful backbone, ConvNeXT-Base [16]. Nevertheless,
compared to these latest work, our method still demon-
strates competitive performance. However, there is still a
significant gap between our method and the state-of-the-art
heuristic algorithms. On the one hand, heuristic algorithms
have been continuously customized and developed over the
past decade for these linear motion scenarios. In contrast,
end-to-end approaches lack this human-crafted prior knowl-
edge and still require time to mature. On the other hand, as
previously discussed, overly homogeneous training data is
detrimental to learnable methods. Therefore, we look for-
ward to diverse and large-scale pedestrian tracking datasets
to better explore and evaluate end-to-end general tracking
methods.

D.2. Inference Speed

Based on the analysis of our network structure, although
we introduce an ID Decoder structure, its computational
cost during inference is negligible compared to that re-
quired by Deformable DETR [43]. In Tab. 2, we compare
our method with another query-based approach that also
uses Deformabe DETR. The results show that MOTIP and
MOTR [35] have similar inference speeds, supporting our
perspective. Additionally, we are surprised to find that at
FP16 precision, MOTIP can achieve nearly real-time infer-
ence speed, indicating its feasibility for practical applica-
tions. To address real-time considerations in the future, De-
formable DETR could be replaced with some recent real-
time DETR frameworks [5, 39].

D.3. Visualization of ID Decoder

As discussed in Sec. 4.4, we believe MOTIP is more flexible
and intelligent in handling historical trajectory information
compared to heuristic-based Re-ID methods. In this sec-
tion, we use some visualizations to elucidate this explana-
tion. In Fig. 6, we present a case where target 5 is not visible
from frames 638 to 641 and reappears in frame 642. When a
target disappears, it is always accompanied by severe occlu-
sion issues. For example, as shown in Fig. 6, although the
detector can correctly identify target 5 in frame 636, she is
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Figure 6. Visualization of the cross-attention scores in the ID Decoder. We show the response intensity between a target and its
corresponding historical tracklets, with darker shades indicating stronger responses. Object 5 is occluded from frame 638 to 641 and
reappears in frame 642. The other two objects, 1 and 2, remain visible during these 20 frames. The targets marked with a red cross indicate
that they are not visible in the current frame. For a more comprehensive example, please refer to Fig. 7.

almost completely occluded by the dancer standing in front.
This severe occlusion can render the target features unreli-
able. In traditional heuristic algorithms, this issue cannot be
dynamically identified and addressed because the matching
rules are manually fixed. However, our MOTIP can make
dynamically optimal choices in such situations based on its
cross-attention structure. As shown in Fig. 6, object 5 se-
lects the targets in frames 630 and 631 as more reliable fea-
tures, avoiding the pitfalls of unreliable ones (like in frame
640 and 641). In contrast, targets 1 and 2, which are not
occluded throughout, will select the features closest to the
current frame as they are the most similar. For a more de-
tailed illustration, please refer to Fig. 7. We believe that
compared to manually crafted rules based on experience,
this flexible dynamic decision-making learned directly from
data can help the model make accurate choices in challeng-
ing scenarios.

D.4. Number of ID Decoder Layers

As a key component, we investigate the impact of different
numbers of layers in the ID Decoder on the final tracking
performance in Tab. 3. Overall, as the number of layers
increases, the final tracking performance improves gradu-
ally (from 54.3 to 60.5 HOTA). We believe this is because
more decoding layers allow for elaborate modeling and fur-
ther refinements of the ID allocations, enabling the model
to handle more complicated situations. However, empiri-
cal evidence suggests an excessive number of network lay-
ers may lead to difficulties in model convergence, thereby
increasing the training burden. At the same time, the im-

Dec Layers | HOTA DetA AssA MOTA IDFI

1 543 755 393 846 519
3 576 758 440 858 583
6 59.5 753 472 856 611
9 60.5 753 489 857 624
12 60.3 750 487 851 61.7

Table 3. Ablation experiments on the number of layers in the pro-
posed ID Decoder. The gray background is the choice for our
final experiment.

provements brought by increasing decoding layers exhibit
diminishing marginal returns. Based on the above consider-
ations, as mentioned in Sec. 4.2, we select a 6-layer struc-
ture as our default configuration.

D.5. Previous Results

This paper has an earlier version at arXiv:2403.16848v]I.
Although the model structure remains unchanged, we up-
dated the codebase and some hyperparameters, resulting in
improved tracking performance in Sec. 4.3 compared to the
earlier version. We suggest that, for subsequent studies,
comparing either of these two results based on their respec-
tive code frameworks is reasonable and acceptable.
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