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Supplementary Material

1. Preliminary background
1.1. Diffusion model background
Since the advent of Denoising Diffusion Probabilistic
Model (DDPM), diffusion model has soon dominated re-
search field of generative AI due to its advantages in train-
ing stability and sampling diversity as compared with GAN.
Grounded in the theory of stochastic differential equa-
tions, diffusion model learns to iteratively denoise a noise-
corrupted input signal (e.g., an image or a video clip), ul-
timately generating clean data that follow the underlying
target distribution. Diffusion model is conceptually com-
posed of a forward diffusion process and a reverse denois-
ing process. The forward diffusion process gradually adds
noise to the data over a series of steps, transforming the
data into a random Gaussian distribution, while the reverse
denoising process learns to reverse the forward process by
iteratively removing noise from the data, starting from pure
noise and gradually reconstructing the original data. The
model is trained to predict the noise added at each step of
the forward process. By learning to denoise, the model can
generate new data samples by starting from random noise
and applying the reverse process.

Given the original data distribution q(x0), the forward
diffusion process applies a T -step Markov chain to gradu-
ally add noise to the original data x0 according to the condi-
tional distribution q(xt|xt−1), which is defined as follows:

q(xt|xt−1) = N (xt;
√
αtxt−1, (1− αt)I), (1)

where αt follows a predefined schedule, αt ∈ (0, 1), αt >
αt+1. Using the notation ᾱt =

∏t
i=1 αi, we can derive the

marginal distribution q(xt|x0) that can be used to directly
obtain xt from x0 in a single step for arbitrary time step t:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (2)

where
√
ᾱT ≈ 0. With the forward diffusion process,

the source data x0 is transformed into xT that follows an
isotropic Gaussian distribution.

The reverse denoising process learns to conversely con-
vert a Gaussian noise xT to the manifold of the original
data distribution q(x0) by gradually estimating and sam-
pling from the posterior distribution p(xt−1|xt). Since
the posterior distribution p(xt−1|xt) is mathematically in-
tractable, we can derive the conditional posterior distribu-
tion p(xt−1|xt, x0) with the Bayes formula and some alge-
braic manipulation:

p(xt−1|xt, x0) = N (xt−1; µ̃t(xt, x0), β̃tI), (3)

µ̃t(xt, x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt, (4)

β̃t =
1− ᾱt−1

1− ᾱt
βt, (5)

where βt = 1 − αt. However, the conditional posterior
distribution p(xt−1|xt, x0) cannot be directly used for sam-
pling since x0 is unavailable at inference time (x0 is the tar-
get of the sampling process). Thus, DDPM tries to estimate
the unknown x0 given the xt at each time step. Considering
the reparameterization form of Eq. 2:

xt =
√
ᾱtx0 +

√
1− ᾱtϵt, (6)

in which ϵt denotes the randomly sampled Gaussian noise
that maps x0 to xt in a single step according to Eq. 2. Given
Eq. 6, we can represent x0 using xt and ϵt:

x0 =
1√
ᾱt

(xt −
√
1− ᾱtϵt). (7)

However, the Gaussian noise ϵt sampled in the forward dif-
fusion process is also unknown for the reverse denoising
process where only xt is available. Consequently, DDPM
builds a noise estimation network ϵθ that predicts the sam-
pled Gaussian noise ϵt in Eq. 7 with xt and time step t as
input, which is realized by training ϵθ with the following
noise regression loss:

L = ∥ϵt − ϵθ(xt, t)∥2, (8)

where t ∼ Uniform({1, ..., T}), ϵt ∼ N (0, I), xt is com-
puted via Eq. 6. After model training, yθ(xt), the estima-
tion of x0 given xt, can be obtained simply by replacing ϵt
in Eq. 7 with the predicted noise ϵθ(xt, t):

yθ(xt) =
1√
ᾱt

(xt −
√
1− ᾱtϵθ(xt, t)). (9)

Replacing the unknown x0 in Eq. 3 with its predicted
estimation yθ(xt) given by Eq. 9, we can sample xt−1

based on xt from the approximate posterior distribution
N (xt−1; µ̃t(xt, yθ(xt)), β̃tI), and thus sample the ultimate
x0 step by step from the initial Gaussian noise xT .

1.2. Conditional diffusion model
Taking the image generation task as an example, conditional
diffusion model tackles conditional image synthesis by in-
troducing additional condition c to the model to guide im-
age generation (denoising) process. In this paradigm, the



condition signal c together with xt and time step t are taken
as input to the noise estimation network ϵθ, such that ϵθ is
trained to conditionally predict the added Gaussian noise
in the forward diffusion process, as supervised by the ran-
domly sampled ϵt in Eq. 6. The training loss given by Eq.
8 is correspondingly updated as:

L = ∥ϵt − ϵθ(xt, t, c)∥2, (10)

where t ∼ Uniform({1, ..., T}), ϵt ∼ N (0, I), xt is com-
puted via Eq. 6. After model training, the reverse sam-
pling process is applied to generate new images from ran-
dom Gaussian noise xT , based on the step-by-step denois-
ing according to the conditional posterior distribution given
by Eq. 3, in which the unknown x0 is approximated by the
linear combination of xt and the conditional noise estima-
tion, i.e., the yθ(xt) (the approximate x0 estimated by xt)
in Eq. 9 is updated as:

yθ(xt, c) =
1√
ᾱt

(xt −
√
1− ᾱtϵθ(xt, t, c)). (11)

1.3. Denoising diffusion implicit model
Denoising diffusion implicit model (DDIM) is a variant of
diffusion model that builds on the framework of DDPM but
enables much more efficient sampling while maintaining
high-quality generation results. DDIM can generate sam-
ples in significantly fewer steps compared with DDPM by
modeling the reverse denoising process as a non-Markovian
process and skipping the intermediate denoising steps.

DDIM is totally the same as DDPM in model training
and only differs with DDPM in model inference, namely
that DDIM can directly inherit the pre-trained DDPM
model. To compute xt−1 from xt in the reverse denoising
(sampling) process, DDIM features a two-step determinis-
tic denoising. In the first step, DDIM estimates an approxi-
mate x0 based on xt using Eq. 9. In the second step, DDIM
computes xt−1 from the approximate x0 using the forward
diffusion in the form of Eq. 6:

xt−1 =
√
ᾱt−1yθ(xt) +

√
1− ᾱt−1ϵt−1, (12)

where yθ(xt) is given by Eq. 9. Considering that the ϵt−1

in the above equation is the sampled Gaussian noise in the
forward diffusion process, which is unknown in the reverse
denoising process, we can replace ϵt−1 with ϵθ(xt−1, t−1),
the approximate ϵt−1 estimated by the network ϵθ. There-
fore, the Eq. 12 can be updated as:

xt−1 =
√
ᾱt−1yθ(xt) +

√
1− ᾱt−1ϵθ(xt−1, t− 1). (13)

However, the ϵθ(xt−1, t − 1) in the above equation is also
unavailable since xt−1 is unknown (we only know xt and
want to compute xt−1). Thus, we can further approximate

ϵθ(xt−1, t − 1) with ϵθ(xt, t) and arrive to the final DDIM
sampling equation:

xt−1 =
√
ᾱt−1yθ(xt) +

√
1− ᾱt−1ϵθ(xt, t). (14)

Eq. 14 shows that the reverse sampling process of DDIM is
totally deterministic, namely, each starting Gaussian noise
xT yields a unique sampling result x0.

Note that the above derived two-step sampling process of
xt → x0 → xt−1 also applies for xt → x0 → xt+1. That
is, a clean image x0 can be deterministically inverted into a
Gaussian noise through the following inversion process:

xt+1 =
√
ᾱt+1yθ(xt) +

√
1− ᾱt+1ϵθ(xt, t). (15)

The DDIM inversion given by Eq. 15 has wide applications
in image editing and style transfer. For conditional image
generation of DDIM, the yθ(xt) and ϵθ(xt, t) in Eq. 14 and
Eq. 15 are updated to yθ(xt, c) and ϵθ(xt, t, c) respectively.

1.4. Latent diffusion model
Latent diffusion model (LDM) compresses images from
high-dimensional pixel space into low-dimensional fea-
ture space via pre-trained autoencoder, and builds diffusion
model based on the latent feature space, such that computa-
tional overhead for both training and inference can be dra-
matically lowered. The training of LDM is similar to Eq.
10 except that we use notation z to denote latent features:

L = ∥ϵt − ϵθ(zt, t, c)∥2, (16)

where ϵt ∼ N (0, I), zt =
√
ᾱtz0 +

√
1− ᾱtϵt, z0 =

E(x0), E is the pre-trained image encoder. The reverse
denoising process from zT ∼ N (0, I) to z0 is the same
as xT ∼ N (0, I) to x0 in DDPM. After reverse denoising
process, the denoised clean features z0 is decoded by the
pre-trained decoder D to yield the finally generated image
x0, i.e., x0 = D(z0). In LDM framework, the condition c
could be the extracted image features that are concatenated
with xt as the input of ϵθ for image-to-image translation ap-
plications, and also could be the encoded textual features
that are interacted with xt with cross-attention layers inside
ϵθ for text-to-image synthesis task.

2. More qualitative results
Below we showcase more qualitative results of our PTDif-
fusion as a supplement to the main text. In Fig. 1 and Fig.
2, we display more results of hidden content discernibil-
ity control realized by varying the async distance param-
eter d in our APTM. In Fig. 3 and Fig. 4, we display
more results demonstrating the sampling diversity property
of our method, namely generating diversified illusion pic-
tures with fixed reference image and text prompt. Finally,
we present more optical illusion hidden pictures generated
by our method in Fig. 5 to Fig. 15.
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Figure 1. More results of hidden content discernibility control realized by varying the async distance parameter d in our method.
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Figure 2. More results of hidden content discernibility control realized by varying the async distance parameter d in our method.
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Text prompt: “mountain stream, oil painting”

Figure 3. More examples of diversified sampling results of our method realized by varying the initial Gaussian noise z̃T .
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Figure 4. More examples of diversified sampling results of our method realized by varying the initial Gaussian noise z̃T .
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Figure 5. More qualitative results of our method.
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Figure 6. More qualitative results of our method.
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Figure 7. More qualitative results of our method.
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Figure 8. More qualitative results of our method.
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Figure 9. More qualitative results of our method.
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Figure 10. More qualitative results of our method.
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Figure 11. More qualitative results of our method.
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Figure 12. More qualitative results of our method.
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Figure 13. More qualitative results of our method.
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Figure 14. More qualitative results of our method.
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Figure 15. More qualitative results of our method.
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