
PosterMaker: Towards High-Quality Product Poster Generation
with Accurate Text Rendering

Supplementary Material

Due to space limitations, we were unable to present all
experimental results in the main text. In this supplementary
material, we will give more details about our experiments
and present additional results.

1. Implementation Details

Training and Inference. We fully follow the settings of
SD3 [7]. During training, the denoise loss Ldenoise uses sim-
plified flow matching, also known as 0-rectified flow match-
ing loss [9]. In inference, we also use the inference method
of flow matching, with 28 inference steps.
TextRenderNet and SceneGenNet. TextRenderNet and
SceneGenNet have an architecture similar to SD3 [7], com-
posed of multiple MM-DiT Blocks. In our implemen-
tation, TextRenderNet consists of 12 layers of MM-DiT
Blocks, while SceneGenNet consists of 23 layers of MM-
DiT Blocks. The output of the Ni-th block of SceneGenNet
is first added with the output of the

⌈
Ni

2

⌉
-th block of Tex-

tRenderNet, and then add to the Ni-th SD3 block.
Classifier-Free Guidance. We use CFG during inference,
with a CFG scale of 5. Additionally, since the “prompt”
inputted to TextRenderNet is not a caption but a text repre-
sentation, the negative one for CFG is set to a zero vector.
During training, we randomly drop the text representation
to a zero vector with 10% probability.
The Setting of t1 in Reward Loss. We follow [17] to
train the reward loss at the last 10 inference steps, i.e., we
set t1 to 10. Within the range of t′ ∼ [1, t1], the result of
the image x0 obtained by one-step inference is close to the
result of complete inference.
Details about Metric Calculation. Our evaluation bench-
mark contains samples generated by LLM [5] thus there
is no ground truth for these samples. Therefore, we ex-
clude these LLM-generated samples when calculating met-
rics that depend on ground truth images, i.e., FID metric
for all experiments, text accuracy metrics for GT (with and
without VAE reconstruction) and results for ablation on dif-
ferent text features.
About ground truth for training Foreground Extension
Detector. We treat the task of detecting foreground exten-
sion as a binary classification problem and ask annotators to
manually label the ground truth.

2. Baseline Details

We carefully designed 6 baseline approaches based on
existing techniques for comparative analysis. The de-
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Figure 1. Detailed illustration of the implementation of the differ-
ent baseline methods.

tails are shown in Fig. 1. For 1) SD3 inpaint byt5, 2)
SD3 canny&inpaint, and 4) AnyText, we fine-tune them on
our 160K dataset for the poster generation task. Meanwhile,
3) SD3 inpaint Anytext is a two-stage inference method.
In the first stage, the pre-trained Inpaint ControlNet gener-



ates the background, and in the second stage, AnyText per-
forms the text editing task, with AnyText also fine-tuned on
the 160K dataset specifically for the text editing task. The
Inpainting ControlNet is initialized from pre-trained SD3
Inpainting-Controlnet [2] and Canny ControlNet is initial-
ized from [3]. For 5) GlyphDraw2 [12] and 6) Glyph-ByT5-
v2 [11] are both the SOTA T2I methods that support mul-
tilingual text rendering. However, they neither have open-
source pre-trained weights nor support subject input, so we
reproduced them on our dataset by adding the pre-trained
inpainting controlnet [4] to support the subject input.

3. Scalable Training for Text Rendering
Our proposed two-stage training strategy allows the model
to learn two different capabilities (i.e., text rendering and
scene generation) separately, enabling more flexibility with
distinct datasets for each phase. Recent text rendering meth-
ods [1, 10, 11, 16] typically train their models on datasets
containing millions of samples. To verify the potential
of further improving our performance with more training
data, we build a large dataset with 1 million samples and
we directly obtain the text annotations with PPOCRv4 [15]
without manually annotating. And we use this dataset for
the first stage of text rendering training and use the same
160k data for the second stage of scene generation learn-
ing. Compared to using 160k data in both of the previous
stages, the text sentence accuracy significantly improved by
4.48% (as shown in Tab. 1), demonstrating that the multi-
stage training strategy is flexible and scalable. However, in
the main experiments, we select to report the performance
of our model training only on 160k data for fair comparison
with the baselines.

Data Size (St.1 & St.2) Sen. ACC NED
160k & 160k 93.11% 98.21%
1M & 160k 97.59% 99.38%

Table 1. Quantitative comparison with different data sizes for text
rendering training.

4. Discussion on advantages of end-to-end over
two-stage methods.

The main weakness of two-stage methods (first inpaint
background, then render text) is their inability to consis-
tently provide a clean background for texts (see Fig. 2,
reducing text readability, especially with complex back-
grounds. In contrast, one-stage methods generate texts
and backgrounds simultaneously, enabling them to create
a clean backdrop or underlays that enhance text visibility.
5. Text Position Control
The position control of PosterMaker uses a very straight-
forward approach (as shown in Fig. 3), mapping the text
bounding box to cosine position encoding, which is then

Ours SD3 inpaint FLUX inpaint

Figure 2. Showcases for end-to-end and two-stage methods.

Method mIoU IoU@0.5 IoU@0.7
Ours 84.65% 97.18% 93.94%

Table 2. Evaluation on text location accuracy.

concatenated with text features and used as the input to Tex-
tRenderNet. To demonstrate our method’s effectiveness, we
evaluate the bounding box IoU (Intersection of Union) met-
ric as follows: 1) we employ OCR model to extract texts
from the generated image. 2) For each ground truth text,
we identify the best-matched OCR-detected text based on
edit distance and then calculate the IoU between their cor-
responding bounding boxes. We average the IoU score over
all the samples to obtain mean IoU (termed mIoU). And
we also report IoU@R which indicates the proportion of
samples with IoU higher than R. As shown in Tab. 2, our
method achieves a high mIoU of 84.65% and 93.94% sam-
ples have an IoU score higher than 0.7. These promising
results prove that our text position control method is simple
yet effective.
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Figure 3. Detailed illustration of how we construct the position
embedding for controlling the text position.

6. Comparison Between GlyphByT5 and
PosterMaker

GlyphByT5 [10, 11] are recently proposed visual text ren-
dering methods that achieve high text rendering accuracy.
And we will discuss some differences and internal connec-
tions between our PosterMaker and GlyphByT5 on how to
control text rendering.
• Text position control: GlyphByT5 achieve text position



control by modifying the original cross-attention mod-
ule with their proposed region-wise multi-head cross-
attention. In contrast, our PosterMaker encodes the text
location directly into the character-level text representa-
tion to accomplish text position control. As discussed
in Sec. 5, our approach is both simple and effective for
precise text location control.

• Text content control: both GlyphByT5 and our Poster-
Maker control the generation of text content by construct-
ing suitable text representation. Specifically, in this work,
we claim that the key to achieve accurate text rendering
is to extract character-level visual features as the con-
trol condition and carefully construct a robust text rep-
resentation based on off-the-shelf OCR model [15]. In
GlyphByT5, the authors also extract character-level text
features, but with a textual encoder named ByT5 [18].
Then they propose glyph-alignment pre-training to align
these textual features with pre-trained visual encoders DI-
NOv2 [14]. Additionally, they employ box-level con-
trastive learning with complex augmentations and a hard-
mining strategy to enhance character-level discrimina-
tiveness. We hypothesize that the primary reason both
our method and GlyphByT5 achieve high text render-
ing accuracy is our shared goal of constructing a robust
character-level visual representation. In fact, the abil-
ity of GlyphByT5’s character-level visual representation
is distilled from the pre-trained visual encoder DINOv2,
rather than inherited from the pre-trained textual encoder
ByT5 itself. In order to verify our hypothesis and in-
sights, we adopt a more direct approach to directly re-
place the PPOCR encoder in PosterMaker with DINOv2.
As shown in Tab. 3, simply extracting character-wise vi-
sual features with DINOv2 can also achieve precise text
rendering. This result further verifies our claim: the key
to precise text rendering is to extract character-level vi-
sual features as the control condition.

Text Feature Type Sen. ACC NED
PPOCR Line visual feat. 38.91% 53.86%
PPOCR Char visual feat. 95.15% 98.75%
DINOv2 Line visual feat. 4.25% 20.59%
DINOv2 Char visual feat. 94.92% 98.66%
GT (w/o Rec.) - 98.53% 99.59%
GT (w/ SD3 Rec.) - 98.09% 99.36%

Table 3. Quantitative comparison using various text features.

7. Visualization of Training Samples
We present example training images from our dataset in-
Fig. 7. The dataset predominantly consists of Chinese text,
with a small portion of English text. Additionally, it in-
cludes challenging cases with small-sized text elements.

8. The Generalization of Text Representation.
PosterMaker is trained primarily on common Chinese data,
with only a minimal amount of English data. Despite this, it
demonstrates a notable level of generalization, enabling it to
generate English, Japanese, and uncommon Chinese char-
acters that were not included in the training set (as shown
in Fig. 6). In order to quantitatively evaluate the general-
ization capability of PosterMaker, we compared the accu-
racy of different text representations on uncommon charac-
ters using a randomly sampled uncommon character bench-
mark. The results show that our method can also generalize
well to some characters that are unseen in the training set.
Our performance is inferior to the canny baseline, likely be-
cause the canny baseline has been pre-trained on large-scale
image data.

Text Feature Type Sen. ACC NED
ByT5 textual feat. 2.01% 10.27%
Canny img 65.12% 74.56%
PPOCR Line visual feat. 8.34 % 15.84%
PPOCR Char visual feat. 61.54% 70.38%

Table 4. Quantitative comparison of the rendering results of dif-
ferent text features on uncommon characters.

9. Ablation about Foreground Extension De-
tector

We collected 20k manually annotated images to train the
foreground extension detector. We randomly selected 10%
samples as a validation set, while using the remaining 90%
for model training. We conduct ablation experiments on
different architecture designs of the detector to verify the
effectiveness of the proposed architecture. We implement 2
baselines: 1) RFNet [6]: we reimplemented RFNet based
on the description in their paper [6]. Since we could not
access their depth and saliency detection models, we modi-
fied our implementation to only use the product image and
generated image as input, excluding the depth and saliency
maps. 2) RFNet(SAM) : in this baseline, we replace the
image encoder used in RFNet with the same SAM[8] im-
age encoder used in our method. As summarized in Tab. 5,
our proposed foreground extension detector outperforms

Method Precision Recall F1 Score
RFNet (our impl.) 76.52% 75.52% 76.02%
RFNet (SAM) 81.35% 80.99% 81.17%
Ours 83.52% 84.81% 84.16%

Table 5. Evaluation on different architectures of foreground exten-
sion detector.
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Figure 4. Class activation map of the foreground extension detec-
tor.

the baselines by a considerable margin, which demonstrates
its effectiveness.

In Fig. 4, we visualize the class activation map [19] of
our proposed foreground extension detector. As shown, we
can observe a notably higher activation score in the ex-
tended foreground regions compared to other areas. This
compelling evidence demonstrates that our detector has
effectively learned to discern foreground extension cases,
thereby it can serve as a robust reward model for fine-tuning
PosterMaker to mitigate the foreground extension problem.

10. Ablation about SceneGenNet
SceneGenNet enables our model to perform background in-
painting while preserve the subject so we cannot directly
remove it. We replace it by SDEdit [13] to achieve inpaint-
ing. As the results shown in Sec. 10, replacing it results in
a significant drop of performance.

Model Sen. ACC ↑ NED ↑ FID ↓ CLIP-T ↑
Ours w/o SceneGenNet 90.53% 97.95% 79.44 26.67
Ours 93.36% 98.39% 65.35 27.04

Table 6. Comparison between SceneGenNet and SDEdit

11. Discussion on the impact of the test set size.
To ensure a fairer comparison between PosterMaker and the
baseline methods, we expanded the test set to 5,000 sam-
ples(10x the previous PosterBenchmark). The results are
shown in Tab. 7, and the experimental conclusions remain

consistent with the previous test set. Due to the calculation
principle of the FID metric, increasing the test size leads to
a significant decrease in the FID scores for all methods, but
still maintains the same conclusion.

Model Sen. ACC ↑ NED ↑ FID ↓ CLIP-T ↑
Glyph-ByT5-v2 67.87% 86.23% 20.37 21.08
SD3 canny&inpaint 74.49% 88.78% 17.91 20.79
GlyphDraw2 83.81% 96.49% 15.24 20.67
Ours 90.20% 97.58% 13.36 21.36

Table 7. Comparison with baseline methods on 5,000 test samples.

12. Discussion on the meaningless texts gener-
ated outside target position.

In our early experimental attempts about text rendering in
poster generation, we found that the trained model some-
times generates meaningless texts outside the target area
of the text, which will seriously affect the aesthetics. We
conjecture that the main reason is that the ground truth im-
ages sometimes contain text outside the specified position.
To solve this problem, we masked out the extra text during
training and it solved most cases.

Specifically, SceneGenNet is initialized from pre-trained
SD3 Inpainting-Controlnet [2]. In the second stage of train-
ing, we simultaneously mask out the regions of the un-
trained texts (usually those that are too small or just lo-
gos) both in the subject mask input to SceneGenNet and in
the ground truth image used for loss calculation(as shown
in Fig. 5). It is worth noting that although these small texts
and logos are not included in the training, we have also an-
notated them to address the aforementioned issues. Finally,
this technique makes the loss corresponding to the masked-
out regions very close to zero so that the model will not
learn these meaningless texts.

Original Ground Truth Masked Ground Truth Masked Subject Mask

Figure 5. Example of our solution technique for meaningless texts
and logos that generated outside target position.



Figure 6. Visualization results on texts in English, Japanese, and uncommon Chinese characters.

Figure 7. Visualization of ground truth for some samples in the dataset.
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