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6. Details on annotation tool

6.1. Face-based annotation

Protrusion score. By measuring the distance and angle
from face fi to support plane P f

k , we define protrusion score
pi = di + ωi · θi, where

di = max
t∈{0,1,2}

(
dist(vt,i, P

f
k )

)
is the maximum Euclidean distance from the vertices vt of
the face fi to the support plane P f

k . The angle weight θi is
calculated by measuring the angle θ̂i = cos−1(ni · nk) be-
tween the normal ni of face fi and the normal nk of support
planar segment P f

k , defined as:

θi =
min(θ̂i, 180

◦ − θ̂i)

90◦
.

Geometric consistency. To measure the geometric con-
sistency between adjacent faces, we utilize an interior
shrinking ball algorithm derived from the 3D medial axis
transform to compute the ball radii for each face [46, 56].

Figure 15. Cross-sectional view
of interior shrinking balls (red) in
urban scenarios.

In urban mesh scenarios,
larger shrinking balls typ-
ically correspond to major
geometric structures such as
the terrain or main sur-
faces of buildings, whereas
smaller balls indicate sharp
structures or protrusions (as
shown in Fig. 15). Con-
sequently, the size of these
balls can indirectly reflect
the local structural scale,
suggesting that adjacent faces within the same geometric
structure should have similar radii. The mesh shrinking ball
radius is derived as

r =
∥q1 − q2∥2

2(nf · (q1 − q2))
,

where r refers to the radius ri or rj , and nf denotes the
normal ni or nj of the respective faces fi or fj ; q1 and q2
are the tangent points on the faces.

Planar segment matching. We define the feature vector
F(seg) to quantify segment matching similarity, including:

• Geometric homogeneity: Differences in area between ge-
ometrically similar segments are calculated as:

∆A(seg) =

∣∣area(c) − area(t)
∣∣

area(t)
,

where area(c) and area(t) are the areas of the candidate
and template segments, respectively.

• Spatial distribution: Vertical distribution similarity is
measured by comparing weighted average heights:

∆H(seg) =

∣∣∣∣∣
∑m′

i=1 zi · ai
area(c)

−
∑m′′

j=1 zj · aj
area(t)

∣∣∣∣∣ .
where zi and ai denote the z-coordinate and area of each
face fi in the candidate segment P (c)

k . zj and aj denote
those in the template segment P (t).

• Spatial orientation: Similarity in vertical orientation is as-
sessed between segments P (c)

k and P (t) [51].
• Shape sphericity: Calculated using eigenvalues from tri-

angle vertices of the segment P (c)
k and P (t) to evaluate

similarity [59].
• Photometric coherence: Color similarity is assessed us-

ing CIELAB [38] color distance and greenness [41] dif-
ference.

Protrusion matching. For seed expansion, in addition
to spatial and segment scale constraints, we introduce op-
tional topology constraints based on adjacency to optimize
user focus and simplify inspection. In urban scenes, small
protrusions (e.g., cars, balconies, dormers) reduce global
matching efficiency by increasing inspection workload and
computation (e.g., matching cars globally takes 5s, whereas
planar facades take only 0.4s, see Fig. 4b). Therefore, we
set topology constraints as the default for practical effi-
ciency by confining the search space to planar segments of
the template support surface (e.g., limiting annotations to
the current facade for facade installations).
The feature vector F(str) includes:
• Spatial compactness: The compactness of a protrusion is

quantified by considering its volume. We expect similar
protrusions to have comparable values, defined as

∆V (str) =

∣∣∣∣∣ vol(c)

vol(c)box

− vol(t)

vol(t)box

∣∣∣∣∣ ,
where vol(c) and vol(c)box represent the volume of f (c) and
its bounding box volume, respectively. vol(t) and vol(t)box

are the corresponding values for f (t).



• Surface complexity: We assume complex 3D shapes de-
compose into multiple planar segments. Surface com-
plexity similarity is measured by the ratio of the number
of planar segments in the template and candidate protru-
sions, defined as

∆N (str) =

(
max(n(t), n(c))

min(n(t), n(c))

)µ

,

where n(t) and n(c) respectively represent the number of
planar segments for the template and candidate protru-
sions, and µ = min(n(t), n(c)).

• Structural features: Measuring the similarity of protru-
sions involves comparing their structural features through
eigenvalue analysis including linearity, planarity, and
sphericity [59]. We determine similarity by the ℓ1 dis-
tance in the feature space, including differences in linear-
ity ∆L(str), planarity ∆P (str), and sphericity ∆S(str).

6.2. Texture-based annotation
Gaussian mixture model (GMM). Gk denotes the GMM
for the k-th channel, defined as

Gk(S) =

M∑
m=1

πkmN (x;µkm,Σkm),

where S represents the superpixel S0 or Sj . x is a pixel
sample point of S, and M is the number of components
in GMM (M set to 5 in all experiments in this paper).
N (s;µ,Σ) denotes the multivariate normal distribution,
with µ representing the mean for superpixels S0 or Sj , and
Σ denotes their respective covariance matrices.

Local color consistency. For local color consistency,
where ρj = ∆E00(U0, Uj) is the color distance (i.e.,
CIEDE2000 [38]) from the superpixel Sj to its seed S0.
To more accurately capture the intrinsic structure and vari-
ability within superpixels’ color distributions, we employ
a GMM to compute the average Lab color, represented by
U =

∑M
m=1 πmµm, where U represents U0 or Uj , with πm

as the mixing weight and µm as the mean for the m-th Gaus-
sian component in the Lab color space. Additionally, seed
samples for U0 are taken from its first-order neighborhood,
whereas samples for Uj come from its own pixels.

Region-based template matching. The feature vector
F(reg) includes:
• Shape index: To assess shape similarity, we use a shape

index reflecting elongation or flatness, which is defined
as: r = min(w,h)

max(w,h) , where w and h represent the width and
height of the object’s bounding box, respectively. The
similarity between regions is calculated as: ∆I(reg) =
|rc − rt|, where r represents the ratio rc of the candidate
region or rt of the template region.

• Shape regularity: We assess shape regularity to calculate
the similarity between areas. Similar to structural match-
ing, compactness is used to describe how well a shape
fills its bounding box, defined as:

∆A(reg) =

∣∣∣∣∣ area(c)

area(c)
box

− area(t)

area(t)
box

∣∣∣∣∣ ,
where area(c) and area(t) represent the area of the candi-
date and template regions, respectively, and area(c)

box and
area(t)

box are the areas of their bounding boxes.
• Contextual features: Similar regions should

have similar internal and external color distribu-
tions. We evaluate these differences using the
Wasserstein distance, calculated as: ∆D(reg) =∣∣∣W (Gk(R

(c)
in ), Gk(R

(c)
out))−W (Gk(R

(t)
in ), Gk(R

(t)
out))

∣∣∣ ,
where R

(c)
in and R

(c)
out denote the interior and exterior

pixel collections of the candidate region, respectively,
and R

(t)
in and R

(t)
out for the template region. The external

region Rout includes pixels covered but not selected
during local expansion.

Scalability. Our workflow is fully compatible with deep
learning-based frameworks like Semantic-SAM [33] and
Mask DINO [32]. Combining them demonstrates the poten-
tial to accelerate template generation through prompt-based
segmentation at various granularities and refine template
matching with instance/object detection. Additionally, our
2D paint canvas (see Fig. 5) converts texture segments into
images that are compatible with these segmentation meth-
ods. This, combined with our annotated dataset, allows di-
rect training on 3D textured surfaces, setting the stage for
future improvements in efficiency and accuracy.

7. Details on benchmark results

7.1. Evaluation of interactive annotation
Evaluation metrics. Traditional metrics, such as click
counts to achieve specific Intersection over Union (IoU) or
Average Precision (AP), are quantifiable but do not fully
capture the true efficiency of the annotation process. The
main shortcomings of these methods include:
• Evaluation limitations: Relying solely on IoU or AP does

not fully capture annotation comprehensiveness. For ex-
ample, a 90% IoU may still require multiple boundary
adjustments for accuracy.

• Interaction limitations: Click-based interactions alone
cannot perfectly annotate boundaries, often requiring
tools like lassos or polygons. Additionally, standardized
click positions do not account for individual user varia-
tions, hindering realistic efficiency assessment.



• Efficiency limitations: Average click counts do not reflect
actual interaction efficiency due to varying user speeds.
Measuring total annotation time provides a more accurate
assessment of efficiency.
To address these issues, we developed an evaluation sys-

tem comprising Intersection over Union (IoU), Boundary
IoU (BIoU), number of operations (Oper), annotation time
(Time), and smart interaction ratio (SR). BIoU assesses
boundary annotation accuracy [13, 20]. Oper counts mouse
clicks and keyboard keystrokes. Time measures annotation
duration in seconds. SR quantifies the frequency of non-
manual interactions (counting only click-based selections,
excluding other operations). Our evaluation is based on user
studies with u users across n test scenes, each with c cate-
gories. The average metrics are calculated as follows:
• Evaluating a single scenario. For a given scenario s, an-

notated by u users across c categories, mIoU , mBIoU ,
mOper, mTime, and mSR, can be obtained by averag-
ing the IoU , mBIoU , mOper, mTime, and mSR val-
ues across all users and categories.

• Evaluating multiple scenarios. To obtain M , B, O, T ,
and S, the averages of for multiple scenarios, we take
the average of each scenario’s mIoU , mBIoU , mOper,
mTime, mSR and then average these values:

M =
1

n

n∑
s=1

mIoUs B =
1

n

n∑
s=1

mBIoUs

O =
1

n

n∑
s=1

mOpers T =
1

n

n∑
s=1

mTimes

S =
1

n

n∑
s=1

mSRs

In the user study, we recorded each user’s annotation
progress and interactions in real-time, requiring at least
95% scene completion based on mesh area or texture pixels.

Comparisons. Tab. 5 shows that our method outperforms
segment-based annotation [19] in object region and bound-
ary quality. Across all four test scenarios, it significantly re-
duces both interaction counts and annotation time. We also
provide additional qualitative analysis, as shown in Fig. 16
and Fig. 17.

From Tab. 6, our method has slightly lower M than
GrabCut [50], but achieves higher mIoUs in most scenarios
and excels in boundary quality. While SimpleClick [37] is
more efficient in interaction count, our method outperforms
others in most scenarios. Though slower than SAM [27],
our method still surpasses other methods in interaction time.
The need for manual corrections enhances annotation qual-
ity without significant time cost, and our approach deliv-
ers more accurate boundaries with similar correction work-
loads compared to deep learning methods. We achieve this

Metric Method Cour. Stre. Park. Harb.

mIoUs(%)
Seg 89.1 94.0 92.1 91.1
Ours 89.5 94.2 92.9 92.2

mBIoUs(%)
Seg. 72.7 85.4 70.6 70.3
Ours. 72.4 84.5 71.9 71.0

mOpers

Man. 18154 1589 3559 3714
Seg. 17645 1407 2529 2894
Ours 13231 909 1797 1957

mTimes(s)
Man. 11401.0 969.5 2146.5 2215.8
Seg. 10441.3 757.0 1441.4 1623.7
Ours 9107.2 498.0 1105.9 1257.5

mSRs(%) Ours 66.5 94.9 85.8 84.8

Table 5. Performance evaluation of interactive mesh face annota-
tion methods across four scenarios: Cour. (courtyard complex),
Stre. (streets with vehicles), Park. (park with trees), Harb. (harbor
with ships). Methods include Man. [52] and Seg. [19]. Highest
values are shown in bold.

through: (1) Better quality from the user-defined template
that enables pixel-level boundary control, outperforming
deep learning-based clicks by approximately +3.5∼6.5%
mIoU and +18.4∼19.5% boundary mIoU ( Tab. 4), es-
pecially for regular shapes like windows in Fig. 11. (2)
Higher efficiency offered by reusable, scale- and rotation-
invariant templates, which reduces the interaction count by
-18.7% compared to SAM (582 vs. SAM’s 716) and an-
notation time by -23% compared to SimpleClick (663.3s
vs. SimpleClick’s 861.3s), benefiting repetitive structures
( Tab. 4). Although SAM is slightly faster and SimpleClick
requires fewer interactions, our intentional design using
handcrafted templates instead of intensive smart clicks pri-
oritizes higher-quality annotations while maintaining a sim-
ilar total annotation time.

For regular-shaped objects, interactive clicking is sub-
optimal. As shown in Fig. 18 and Fig. 19, single clicks
lack boundary precision, and multiple clicks do not signifi-
cantly improve accuracy. Repetitive structures increase the
annotation burden due to frequent clicking. Instead, users
achieve high precision by drawing rectangles or polygons
for elements like windows or doors. Our method enables ef-
ficient annotation of similar structures by creating a graph-
ical template once. In summary, if manual corrections in
semi-automatic annotations take as much or more time than
fully manual annotations, the method loses its utility. Ad-
ditional qualitative results from our annotation methods are
presented in Fig. 20.

Ablation studies on template matching. Our feature de-
sign is grounded in geometric priors (shape properties and



Input Segment-based (errors) [19] Ours (errors) Manual [52]

Figure 16. Qualitative analysis of interactive mesh face annotations and their error maps (shown in red) for the courtyard complex.

Input Segment-based (errors) [19] Ours (errors) Manual [52]

Figure 17. Qualitative analysis of interactive mesh face annotations and their error maps (shown in red) for the street with vehicles.

Input GrabCut [50] Simclick [37] SAM [27] Ours Manual

Figure 18. Qualitative analysis of interactive texture annotation results for the facade.

Input GrabCut [50] Simclick [37] SAM [27] Ours Manual

Figure 19. Qualitative analysis of interactive texture annotation results for the park.

structural distribution), label-free operation, and compu-
tational efficiency, validated through hierarchical ablation
studies (mIoU) as follows. For matching: (1) Planar seg-
ments (e.g., roofs, best 88.4% in Fig. 16). Removing geo-
metric homogeneity (-6.1%), spatial distribution (-13.8%),
orientation (-13.3%), and shape sphericity (-1.8%) caused
performance drops. (2) Protrusions (e.g., cars, best 97.0%
in Fig. 17). When spatial compactness (-2.6%), surface
complexity (-1.2%), and structural features (-1.6%) were re-
moved, precise matching suffered significantly. (3) Regions
(e.g., windows, best 90.7% in Fig. 18). Eliminating shape
index (-5.2%), regularity (-38.1%), and contextual features
(-20.3%) severely impaired boundary alignment and color
consistency. These results highlight the essential role of
each feature and their combined effectiveness, confirming
our method’s superior performance.

7.2. Evaluation of semantic segmentation
1) Face labeling track. Tab. 7 provides a detailed com-
parison of results for all face-labeled classes. Due to class
imbalance, most methods show better performance in cate-

gories with more samples and poorer performance in cate-
gories with fewer samples. We conducted qualitative anal-
yses on all methods except PointNet for two scenarios, as
shown in Fig. 21 and Fig. 22.

2) Pixel labeling track. Tab. 8 provides a detailed compari-
son of results for all face-labeled and pixel-labeled classes.
PointVector [17] surpasses other methods in all categories,
particularly with pixel labels. However, compared to the
categories shared with Tab. 7, the IoU results for most meth-
ods have decreased. This is mainly because the three mesh
sampling methods produce relatively uniform point clouds,
failing to capture the geometric density variations inher-
ent in adaptive meshes. Additionally, the increase in the
number of classes has exacerbated the issue of class imbal-
ance. We performed qualitative analyses for all methods in
two scenarios, with global and zoomed-in views, as shown
in Fig. 23 and Fig. 24.



Input Face-based annotation Texture-based annotation

Figure 20. Examples of part-level annotated semantic urban meshes are displayed from the first to the third column, showing textured
meshes, face-based semantic meshes (13 classes), and texture-based semantic meshes (19 classes), respectively.

8. Comparison of related datasets

Compare with SUM. Our proposed SUM Parts dataset
extends beyond SUM’s object-level labels [19], offering
three key benefits: (1) finer geometric analysis, such as
evaluating heat loss at the window-level rather than at
the building-scale; (2) support for part-aware tasks, e.g.,
drone navigation for precise delivery by localizing win-
dows, doors, and rooftop solar panel planning; (3) seamless

integration with urban digital twins and BIM workflows.

Compare with KITTI-360. KITTI-360 [35] focuses on
street-view LiDAR-image fusion for autonomous driving,
providing 37 Cityscapes-aligned classes, including road-
accessible static and dynamic objects (≥0.1m resolution)
labeled via manual selection and trajectory-based matching.
In contrast, SUM Parts addresses broader urban planning
and sustainability challenges using oblique photogramme-



Truth (top), Mesh (bottom) RF_MRF SUM_RF PSSNet

PointNet++Sp. SPGSp. SparseUNetFc. Randla-netFc.

KPConvFc. PointNextFc. PointTransV3Fc. PointVectorFc.

Figure 21. Qualitative analysis of semantic segmentation and error maps in the face labeling track for all methods except PointNet [12] in
the first scenario. Fc. and Sp. denote face-centered and superpixel sampling, respectively.



Truth (top), Mesh (bottom) RF_MRF SUM_RF PSSNet

PointNet++Sp. SPGSp. SparseUNetFc. Randla-netFc.

KPConvFc. PointNextFc. PointTransV3Fc. PointVectorFc.

Figure 22. Qualitative analysis of semantic segmentation and error maps in the face labeling track for all methods except PointNet [12] in
the second scenario. Fc. and Sp. denote face-centered and superpixel sampling, respectively.



Metric Method Fac1. Fac2. Par1. Par2. Rod1. Rod2.

mIoUs(%)

Gra. 80.2 87.3 94.0 90.4 91.3∗ 85.4
SAM 81.0 86.4 85.3 86.4 86.5 80.7
Sip. 73.7 77.5 87.9 86.2 84.0 79.1
Ours 79.2 88.7 95.0 91.2 91.3 82.1

mBIoUs(%)

Gra. 27.8 45.4 63.7 45.8 49.9 50.1
SAM 24.7 33.9 25.8 23.3 34.1 37.0
Sip. 19.7 26.8 38.0 34.4 31.8 34.6
Ours 28.1 50.5 67.8 48.6 50.5 50.6

mOpers

Man. 515 124 497 297 718 1764
Gra. 717 156 462 243 960 1729
SAM 715 319 363 319 1020 1684
Sip. 297 119 77 78 400 539
Ours 487 105 497 213 720 1468

mTimes(s)

Man. 816.9 185.6 636.7 280.1 801.7 1941.4
Gra. 920.1 242.6 494.9 270.8 836.3 1920.6
SAM 565.5 150.6 460.9 389.5 800.6 1476.5
Sip. 1128.5 338.9 197.7 230.8 1526.4 1745.5
Ours 631.1 155.8 565.9 189.1 767.9 1670.3

mSRs(%)

Gra. 7.1 11.8 59.3 66.5 9.9 26.7
SAM 94.7 92.8 78.8 78.6 49.2 36.0
Ours 20.3 21.2 51.6 75.8 32.2 40.8

Table 6. Performance evaluation of interactive texture anno-
tation methods across six scenarios: Man. (manual), Gra.
(GrabCut [50]), SAM (Segment Anything [27]), Sip. (Sim-
pleClick [37]), Fac1./Fac2. (facades 1 & 2), Par1./Par2. (parks
1 & 2), Rod1./Rod2. (roads 1 & 2). ∗GrabCut on Rod1. achieved
91.29%, slightly below our method’s 91.31%. Highest values are
in bold.

try meshes. Key differences include: (1) Labeling granu-
larity: SUM Parts offers both object- and part-level anno-
tations (21 CityGML-aligned classes) for fine-grained ur-
ban infrastructure details. (2) Annotation tools: Our mesh-
texture semi-automatic selection tools (click, stroke, lasso)
with 2D/3D template matching ensure efficient annotation.
(3) Coverage: SUM Parts provides full-city coverage, an-
notating all static objects (≥0.5m resolution), including
vehicle-inaccessible areas. Hence, SUM Parts complements
KITTI-360 for broader urban applications.



terr. hveg. faca. wate. car boat roof. chim. dorm. balc. roin. wall OA mAcc mIoU

RF_MRF 81.6 86.6 81.3 84.5 24.8 3.7 73.3 27.6 0.0 4.8 0.4 5.9 85.2 45.3 39.5
SUM_RF 84.8 88.1 84.0 79.0 42.5 10.6 77.7 42.4 3.5 22.2 4.7 12.7 86.9 53.6 46.0
PSSNet 80.7 90.5 85.2 64.2 52.6 13.0 78.1 44.0 6.6 25.7 6.9 16.6 86.3 56.4 47.0
PoinNetSp. 52.6 7.1 38.6 59.9 0.0 0.0 22.8 0.0 0.0 0.0 0.0 0.0 50.6 22.0 15.1
PoinNet++Sp. 67.9 68.7 59.2 86.1 24.2 11.1 51.1 24.9 0.0 0.0 3.3 1.1 69.0 46.9 33.1
SPGSp. 53.4 55.3 62.5 40.5 27.4 13.1 64.3 33.9 5.1 11.3 3.9 9.9 64.9 55.0 31.7
SparseUNetFc. 88.6 91.7 88.6 76.7 75.6 14.6 82.3 70.1 27.0 49.0 28.0 33.9 90.3 71.7 60.5
Randla-netFc. 86.7 92.3 81.6 87.1 82.9 41.2 71.6 55.6 21.6 27.6 19.0 21.1 86.7 76.3 57.4
KPConvFc. 86.9 90.8 88.3 81.5 66.4 16.5 81.9 66.7 16.1 45.3 21.2 28.2 90.1 64.7 57.5
PointNextFc. 91.0 95.0 90.4 81.6 91.2 17.9 83.1 74.6 33.8 56.0 30.0 39.3 91.8 77.2 65.3
PointTransV3Fc. 88.6 90.1 87.9 78.9 72.1 16.1 81.0 66.2 21.4 45.2 25.0 36.4 89.9 70.2 59.1
PointVectorFc. 92.3 96.8 91.7 85.1 95.2 22.0 85.9 82.6 47.9 62.4 38.6 40.0 93.1 80.7 70.0

Table 7. Comparison of 3D semantic segmentation methods for face labeling using optimal sampling. Semantic categories: ‘terr.’ (terrain),
‘hveg.’ (high vegetation), ‘faca.’ (facade), ‘wate.’ (water), ‘roof.’, ‘chim.’ (chimney), ‘dorm.’ (dormer), ‘balc.’ (balcony), and ‘roin.’ (roof
installation). Fc. and Sp. denote face-centered and superpixel sampling, respectively. Results are presented as IoU (%), Overall Accuracy
(OA %), mean Accuracy (mAcc %), and mean IoU (mIoU %). Highest values in IoU, OA, mAcc, and mIoU are highlighted in bold.
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PoinNetSp. 0.5 13.3 16.5 0.0 2.1 7.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.5 0.0 0.0 0.0 0.2 17.3 9.8 2.6
PoinNet++Sp. 72.7 47.5 86.4 34.9 12.4 52.4 28.1 0.0 5.3 5.6 0.4 13.0 5.0 42.4 31.2 14.6 9.5 0.0 7.3 55.4 35.2 24.7
SPGSp. 58.2 50.8 18.4 24.1 2.7 60.4 39.9 3.1 13.6 4.4 10.5 2.4 4.0 13.4 14.6 31.0 0.0 1.7 12.1 51.5 34.5 19.2
SparseUNetRd. 88.8 70.0 5.9 51.6 2.5 79.8 55.0 12.3 45.4 22.6 31.5 32.0 12.3 15.2 43.8 44.6 5.2 0.6 35.8 72.9 45.1 34.5
Randla-netSp. 90.5 60.9 84.6 67.6 22.7 74.7 53.3 0.6 29.3 16.2 26.3 33.4 12.8 59.8 48.8 50.2 31.5 0.0 37.1 73.5 57.7 42.1
KPConvSp. 84.0 68.5 81.7 68.6 21.8 78.2 66.4 25.0 41.8 29.6 31.5∗ 36.1 14.9 21.4 35.8 50.0 7.3 13.4 34.1 74.4 58.3 42.6
PointNextPo. 90.1 66.2 87.9 68.1 16.3 74.5 59.7 14.9 35.6 19.1 31.0 33.2 13.7 55.5 51.4 55.5 29.0 6.9 40.0 76.0 57.6 44.7
PointTransV3Rd. 85.9 59.9 74.6 64.7 17.8 75.9 58.7 15.3 37.2 16.2 29.3 11.8 7.9 27.1 43.3 51.5 3.5 7.2 33.4 70.6 54.1 38.0
PointVectorSp. 92.7 66.6 92.0 70.2 19.8 76.8 60.8 21.8 37.0 20.6 30.8 37.1 16.5 59.8 53.9 57.4 35.0 16.4 45.0 77.0 63.8 47.9

Table 8. Comparison of 3D semantic segmentation methods for pixel labeling using optimal sampling strategies: ‘hveg.’ (high vegetation),
‘faca.’ (facade surface), ‘wate.’ (water), ‘roof.’ (roof surface), ‘chim.’ (chimney), ‘dorm.’ (dormer), ‘balc.’ (balcony), ‘roin.’ (roof
installation), ‘wind.’ (window), ‘lveg.’ (low vegetation), ‘impe.’ (impervious surfaces), ‘roma.’ (road marking), ‘cycl.’ (cycle lane),
and ‘side.’ (sidewalk). Additionally, Sp. denotes superpixel sampling, Rd. for random sampling, and Po. for Poisson-disk sampling [14].
Results are presented as IoU (%), Overall Accuracy (OA %), mean Accuracy (mAcc %), and mean IoU (mIoU %). ∗KPConv’s IoU for
wall is 31.46%, slightly below SparseUnet’s 31.47%. Highest values in IoU, OA, mAcc, and mIoU are highlighted in bold.



Truth (top), Mesh (bottom) PointNetSp. PointNet++Sp. SPGSp. SparseUNetRd.

Randla-netSp. KPConvSp. PointNextPo. PointTransV3Rd. PointVectorSp.

Truth (top), Mesh (bottom) PointNetSp. PointNet++Sp. SPGSp. SparseUNetRd.

Randla-netSp. KPConvSp. PointNextPo. PointTransV3Rd. PointVectorSp.

Figure 23. Qualitative analysis of semantic segmentation and error maps in the pixel labeling track for all methods in the first scenario. Sp.

denotes superpixel sampling, Rd. for random sampling, and Po. for Poisson-disk sampling [14]. The zoomed-in view direction is indicated
in the input mesh image.



Truth (top), Mesh (bottom) PointNetSp. PointNet++Sp. SPGSp. SparseUNetRd.

Randla-netSp. KPConvSp. PointNextPo. PointTransV3Rd. PointVectorSp.

Truth (top), Mesh (bottom) PointNetSp. PointNet++Sp. SPGSp. SparseUNetRd.

Randla-netSp. KPConvSp. PointNextPo. PointTransV3Rd. PointVectorSp.

Figure 24. Qualitative analysis of semantic segmentation and error maps in the pixel labeling track for all methods in the second scenario.
Sp. denotes superpixel sampling, Rd. for random sampling, and Po. for Poisson-disk sampling [14]. The zoomed-in view direction is
indicated in the input mesh image.


