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1. Implementation Details

All experiments are carried out on a single NVIDIA RTX
3090 GPU. We use the Adam optimizer for 3D Gaussian
feature attributes, with learning rates of 0.02 and 0.001 for
the SH feature’s zero-frequency and high-frequency com-
ponents, respectively. Each composition pair’s optimiza-
tion takes less than 5 minutes in total. During the S-phase,
we sample 5,000 points as a batch from the 3D Gaussians’
point cloud for each iteration rather than using the entire
set; otherwise, the training speed will be slow. Throughout
the KNN and palette collection, customized CUDA kernels
are used to accelerate the process in less than three seconds.
The entire optimization takes 6,000 iterations, consistently
maintaining the loss in the S-phase and boundary condi-
tions, with the T-phase beginning at 4,500 and continuing
until completion.

2. Fairness of Comparison on Real-world Data

We compared our method with SeamlessNeRF [3], but we
encountered a disparity when conducting our experiment on
real-world data, prompting us to enhance the baseline per-
formance using our approach. The discrepancy arises from
the fact that SeamlessNeRF, built upon TensorRF [2], was
not implemented for editing scene geometry, such as seg-
mentation and cropping. In real-world scenarios, precise
masks for target objects are often unavailable, thus mak-
ing the SeamlessNeRF hardly directly applied to real-world
data. To compare with SeamlessNeRF on the real-world
data, we utilized the interactive editing capability of our
framework to generate alpha channels rendered by 3DGS
[4] to crop the target object from the background. Addi-
tionally, to ensure editing effects are based on clean density
fields, we introduced a random background argumentation
to mitigate artifacts during the SeamlessNeRF training pro-
cess:

Ealphacolar = ”wq(cq - 661) - dq(éq - 511)”3 (1)

where wy, is the accumulated weights along ray ¢ in NeRF’s
render equation, and &, is the alpha channels generated for

w/o

Figure 1. Improvement for SeamlessNeRF. With the help of mask
loss and the mask provided by our method, artifacts are signifi-
cantly suppressed, resulting in a fair comparison.

supervision. In the equation, ¢, is the color computed by
our model, and ¢, is the corresponding ground-truth color.
The black and white background colors d, are randomly se-
lected for each ray ¢ with equal possibility in our imple-
mentation. Fig. 1, shows that without this loss, too many
artifacts prevent SeamlessNeRF from performing seamless
editing effects. Therefore, the fairness of comparison be-
tween ours and the baseline’s effects is contributed by the
strength of our approach and some additional efforts, which,
in turn, gives proof of our superiority.

2.1. Choice of Benchmark

Given the interactive nature of our method, the outcomes
in all cases hinge on users’ selections of compelling exam-
ples and their efforts to craft semantically meaningful re-
sults. Finding an existing dataset tailored to this specific
task proved challenging. Consequently, we opted to uti-
lize datasets such as BlendedMVS [6], Mip360 [1], and the
synthetic data employed in SeamlessNeRF [3]. It is worth
mentioning that while the latter dataset is not derived from
real-world sources, we have included it to underscore the
discernible disparities between our approach and the base-
line.
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Figure 2. To demonstrate the natural appearance, we insert these composite models back into their unbounded backgrounds (the floaters

are caused by the problem of 3DGS under unbounded scenes).

a

Figure 3. We describe the transformation workflow using our GUI, as well as how to remove unwanted parts during composition. Users can
adjust models to create a semantically meaningful composite, and use a brush to remove unwanted parts, allowing for a more fine-grained
composition. For more information, please refer to our supplementary video.

3. More Qualitative Comparison

We present a more extensive qualitative comparison, en-
compassing all cases in our benchmark. Direct visualization
is considered to be more comprehensive than a user study.
In Fig. 4, the rows (from top to bottom) represent cases
numbered from 1 to 17. Cases 1-13 are derived from real-
world data obtained from BlendedMVS and Mip360, while
cases 14-17 originate from synthesis data used in Seamless-
NeRF. The columns (from left to right) depict part models,
raw composites, and two views of our method and the base-
line, respectively.

4. More Quantitative Comparison

4.1. Evaluating with VQA

The VQA (Video Quality Assessment) method acts as a tool
to assess video quality, which has become increasingly es-

sential due to the rapid increase of 2D user-generated con-
tent. Therefore, instead of evaluating the 3D models di-
rectly, we utilize VQA [5] to assess the quality of the videos
generated from our models. To produce coherent video
sequences, we configure the camera orbit to showcase the
models and ensure that the camera remains focused on the
models at all times. Specifically, for results where the tar-
get field occupies a substantial space, circular camera orbits
are employed to provide panoramic views, while for those
occupying specific angles, spiral camera orbits are utilized
(refer to our videos for visual demonstration).

Statistic. Table 2 provides detailed information from the
table presented in the main text. In Tab. 2, a positive num-
ber indicates that our method outperforms the baseline. The
column At represents the difference in the technical score,
which typically relates to distortions or artifacts, while the
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column Aa represents the difference in the aesthetic score,
which typically reflects preferences and recommendations
regarding content. It is important to note that the Aa met-
ric for certain cases (e.g., case 10, case 12) may not accu-
rately reflect the true performance. This is because the VQA
model struggles to comprehend seamless editing effects and
instead favors situations with more diverse colors present.

4.2. Why Not FID.

To compare using FID, we collected training data from the
benchmark to serve as the ground truth set, enabling the
identification of the distribution of realistic objects. How-
ever, the FID scores for both methods exceeded 300, far be-
yond the normal range of previous generation tasks. This
suggests that comparing with the FID metric makes no
sense. The main reason is that the created composites them-
selves did not appear in any dataset. Additionally, in some
cases, the backgrounds were missing, further complicating
the FID algorithm’s assessment.

5. Speed Comparison

Table 1 presents a concise comparison of speed, demon-
strating that our method also surpasses the baseline in terms
of optimization efficiency. In addition to the advantage of
our method in terms of user time consumption during inter-
active adjustments, particularly noteworthy is the optimiza-
tion speed: SeamlessNeRF requires over one hour, whereas
ours takes less than 5 minutes. For visualizing the optimiza-
tion process, please refer to our video.
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Figure 4. Case 1-7 are displayed in rows from top to bottom. The rightmost two columns present the baseline results for comparison.
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Figure 4. Case 8-13 are displayed in rows from top to bottom. The rightmost two columns present the baseline results for comparison.

ours SeamlessNeRF
average optimizing time | | < 4 min >1h
real-time adjustment YES NO

Table 1. Speed Comparison between ours and the baseline.
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Figure 4. Case 14-17 are displayed in rows from top to bottom. The rightmost two columns present the baseline results for comparison.
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LIVE_VQC
At 1 Aa T

KoNViD-1k
At 1 Aa 1

LSVQ_Test
At 1 Aa 1

LSVQ_1080P
At Aat

YouTube_UGC
At 1 Aa 1

casel
case2
case3
case4
caseS
caseb
case’
case8
case9
caselO
casell
casel2
casel3
casel4
casels
casel6
casel?
average

-0.075  +0.149
+0.887 +0.453
+0.057 +0.326
+0.706  -0.337
+0.077 +0.078
+0.370  +0.051
+0.528 +0.132
+0.018 -0.179
+1.053 +0.426
+0.887  -0.039
+0.284 +0.018
+0.072  -0.293
+0.349  -0.120
+0.459 +0.014
+0.101 -0.426
+0.040 +0.091
+0.386  +0.117
+0.365 +0.027

-0.058  +0.142
+0.804 +0.394
+0.052 +0.284
+0.640 -0.293
+0.070  +0.067
+0.335 +0.044
+0.478 +0.115
+0.016 -0.156
+0.953 +0.372
+0.804 -0.033
+0.257 -0.022
+0.065 -0.256
+0.317 -0.104
+0.416 -0.012
+0.092 -0.371
+0.036  +0.079
+0.349  +0.101
+0.331 +0.021

-0.049  +0.140
+0.760  +0.376
+0.049 +0.270
+0.605 -0.278
+0.066 +0.064
+0.317 +0.043
+0.454  +0.109
+0.015 -0.148
+0.902 +0.355
+0.761 -0.032
+0.244  +0.012
+0.062  -0.242
+0.299  -0.099
+0.392  +0.011
+0.087 -0.353
+0.034  +0.076
+0.330  +0.097
+0.313 +0.024

-0.059  +0.148
+0.808 +0.442
+0.052 +0.318
+0.642  -0.327
+0.070  +0.075
+0.337 +0.050
+0.482 +0.129
+0.016 -0.174
+0.957 +0.416
+0.807 -0.037
+0.259  -0.027
+0.065 -0.285
+0.318 -0.116
+0.417 +0.014
+0.092 -0.415
+0.036  +0.089
+0.350 +0.114
+0.332  +0.024

-0.066  +0.094
+0.841 +0.413
+0.054 +0.298
+0.669  -0.307
+0.073  +0.070
+0.351  +0.047
+0.501 +0.121
+0.017  -0.163
+0.997  +0.390
+0.841  -0.035
+0.269 -0.014
+0.068  -0.268
+0.331 -0.109
+0.435 -0.013
+0.097  -0.390
+0.038  +0.082
+0.366  +0.107
+0.346  +0.019

Table 2. Per-case Quantitative Results. We color each cell as better and worse.
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