
A. Proof of Proposition 3.1

Proposition. For η ∈ [0, 1], consider the distribution:

qη(xτ1:τN |x0) = qη(xτN |x0)

N∏
n=2

qη(xτn−1
|xτn ,x0) (25)

where qη(xτN |x0) = N (x0, τ
2
NI), as in [22]. For all n > 1, let

qη(xτn−1
|xτn ,x0) = N

(
x0 + ξ

√
1− η2τn−1

x0 − xτn

τn
, η2τ2n−1I

)
. (26)

where ξ ∈ {−1, 1}. Then, for for any n ∈ [1, N ] we have that

qη(xτn |x0) = N (x0, τ
2
nI). (27)

Proof. The proof follows the one of Lemma 1 in [22], which is based on induction. For the base case n = N , (27) holds by
construction, and under the induction assumption for n, i.e., qη(xτn |x0) = N (x0, τ

2
nI), one needs to prove for n− 1.

As pointed in [22], the marginal qη(xτn−1 |x0) =

∫
xτn

qη(xτn−1 |xτn ,x0)qη(xτn |x0)dxτn is Gaussian N (µ,Σ) with

µ = x0 + ξ
√

1− η2τn−1
x0 − E{xτn |x0}

τn
= x0 + ξ

√
1− η2τn−1

x0 − x0

τn
= x0

Σ = ξ2
(1− η2)τ2n−1

τ2n
Cov(xτn |x0) + η2τ2n−1I =

(1− η2)τ2n−1

τ2n
τ2nI+ η2τ2n−1I = τ2n−1I

where we used ξ2 = 1.

B. More Experimental Details and Results

In this section, we provide additional details about the experiments, as well as supplementary quantitative and qualitative
results that were not included in the main body of the paper due to space constraints. Our code for reproducing the results
will be made available upon acceptance. Our code is available at https://github.com/tirer-lab/CM4IR.

B.1. Hyperparameter setting
In our experiments, we utilize the DDPM sequence {βi}1000i=1 for setting the chosen time points / noise levels. Specifically,
consistent with many DM methods, the sequence {βi} is defined using a linear schedule that ranges from β1 = 0.0001 to

β1000 = 0.02. A sequence {α̂i} is computed as follows: α̂i =

i∏
j=1

αj with αj = 1 − βj . Observe that {α̂i} decreases as i

increases. Given an index number iN , we select the relevant α̂iN from {α̂i} and set αN = α̂iN .
As explained in Section 4, in CM4IR we use γ and αN to tune the sequence {αn}Nn=1 for the N NFEs, in the following

manner: αn−1 = αn(1 + γ). We keep the sequence bounded within the range [0, 0.999].
In Figure 7, we observe sequences {αn} of length 4 for various iN values and corresponding γ settings. The plots

illustrate how the choice of γ influences the progression of αn values over time steps, starting from an initial αN . The left
plot corresponds to iN = 150 with smaller γ values, the middle plot represents iN = 250 with moderate γ values, and the
right plot shows iN = 400 with higher γ settings.

The hyperparameters of CM4IR are listed in Table 5. The tuning shows a high level of consistency, making our method
intuitive and easy to tune across tasks and datasets. For instance, η remains fixed at 0.1 in all configurations. Similarly, γ and
iN values exhibit only minor variations within each task, showing that fine-tuning requires minimal effort. For the deblurring
task, we also regularize the BP in the intermediate iteration. Namely, we use AT (AAT + σ2

yζ)
−1 with ζ > 0.
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Figure 7. αn sequences for different iN and γ settings. αn values are clipped to [0, 0.999]. Recall that the noise level is τn =
√
1− αn.

Table 5. CM4IR hyperparameters.

Task LSUN Bedroom LSUN Cat

Bicub. SRx4 σe=0.025 η = 0.1, iN = 400, γ = 0.7, δi = (0.0, 0.5, 0.1, 0.0) η = 0.1, iN = 400, γ = 0.7, δi = (0.0, 0.3, 0.0, 0.0)

Bicub. SRx4 σe=0.05 η = 0.1, iN = 250, γ = 0.2, δi = (0.0, 0.3, 0.05, 0.1) η = 0.1, iN = 250, γ = 0.2, δi = (0.1, 0.1, 0.0, 0.0)

Gauss. Deblurring σe=0.025 η = 0.1, iN = 90, γ = 0.02, ζ = 3.0, δi = (0.0, 0.0, 0.0, 0.0) η = 0.1, iN = 100, γ = 0.03, ζ = 4.0, δi = (0.0, 0.0, 0.0, 0.0)

Gauss. Deblurring σe=0.05 η = 0.1, iN = 160, γ = 0.07, ζ = 1.5, δi = (0.0, 0.0, 0.0, 0.0) η = 0.1, iN = 180, γ = 0.1, ζ = 2.0, δi = (0.0, 0.0, 0.0, 0.0)

Inpaint. (80%) σe=0 η = 0.1, iN = 150, γ = 0.2, δi = (0.1, 0.1, 0.8, 0.8) N/A

Inpaint. (80%) σe=0.025 η = 0.1, iN = 150, γ = 0.2, δi = (0.2, 0.3, 0.8, 0.8) η = 0.1, iN = 150, γ = 0.2, δi = (0.0, 0.0, 1.0, 1.0)

Inpaint. (80%) σe=0.05 η = 0.1, iN = 150, γ = 0.2, δi = (0.2, 0.1, 1.0, 1.0) η = 0.1, iN = 150, γ = 0.2, δi = (0.0, 0.0, 1.0, 1.0)

B.2. Robustness to hyperparameter settings

To asses the robustness of CM4IR to the hyperparameter settings, we examine PSNR/LPIPS for SRx4 with σy=0.025 on
the LSUN bedroom when we moderately modify the parameters from the values stated in B.1. Figure 8 (left) shows that
increasing η has only minor effect on the PSNR/LPIPS. Consistent PSNR/LPIPS are also observed in Figure 8 (right) when
decreasing (iN , γ). Recall that iN determines the first noise level (higher iN implies stronger noise) and γ determines its
decay rate. Thus, it makes sense to pair them, as examined.

Figure 8. PSNR/LPIPS for different parameters. The chosen values are in bold.

B.3. Effectiveness of δ

In Table 1, we presented some of the effectiveness of using δ > 0 within the ablation study. The results presented in Tables 6
and 7 demonstrate the effectiveness of using δ > 0 across more tasks and datasets. In most cases, introducing non-zero δ
values consistently improves the PSNR. Additionally, setting δ > 0 often leads to better (or similar) LPIPS.
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Table 6. Super-resolution, gaussian deblurring and inpainting. PSNR [dB] (↑) and LPIPS (↓) results on LSUN Bedroom validation set.

Task δ Alg.1 with δ = 0 Alg.1 with δ > 0

SRx4 σy=0.025 25.94 / 0.298 26.14 / 0.295
SRx4 σy=0.05 25.51 / 0.320 25.60 / 0.320

Inpaint. (80%) σy=0 25.13 / 0.296 25.43 / 0.284
Inpaint. (80%) σy=0.025 25.05 / 0.301 25.34 / 0.295
Inpaint. (80%) σy=0.05 24.85 / 0.363 25.28 / 0.328

Table 7. Super-resolution and inpainting. PSNR [dB] (↑) and LPIPS (↓) results on LSUN Cat validation set.

Task δ Alg.1 with δ = 0 Alg.1 with δ > 0

SRx4 σy=0.025 27.04 / 0.325 27.18 / 0.328

SRx4 σy=0.05 26.44 / 0.342 26.53 / 0.349

Inpaint. (80%) σy=0.025 25.75 / 0.381 25.89 / 0.364
Inpaint. (80%) σy=0.05 25.13 / 0.424 25.34 / 0.423

B.4. Different amount of NFEs
In this subsection, we investigate alternative choices for the number of NFEs. To provide a comprehensive evaluation, we
adapted the same algorithm for setups with 3 NFEs and 5 NFEs, maintaining δ = 0 across all cases. Each configuration
required tuning of the iN , γ and η hyperparameters. For N = 3 NFEs, we tuned iN and γ for obtaining three αn values, and
for N = 5 NFEs we tuned iN and γ for obtaining five αn values.

The results of these experiments are summarized in Table 8. As the table indicates, while the 3 NFEs configuration
achieves reasonable performance, it does not fully utilize the reconstruction capacity of the algorithm. On the other hand,
increasing to 5 NFEs does not show gains compared to 4 NFEs. This may be due to restrictions of our tuning strategy that
uses only two hyperparameters.

Table 8. Evaluating CM4IR with different amount of NFEs. Super-resolution. PSNR [dB] (↑) and LPIPS (↓) results on LSUN Bedroom
validation set.

Task NFEs 3 NFEs 4 NFEs 5 NFEs

SRx4 σy=0.025 25.71 / 0.319 25.94 / 0.298 25.98 / 0.315

SRx4 σy=0.05 25.31 . 0.348 25.51 / 0.320 25.42 / 0.339

B.5. Advantages over additional competitors
In this subsection, we evaluate DPS [6], a reconstruction method based on pretrained DMs with Least-Squares (LS) guidance.
For super-resolution, we tested DPS under the settings σy = 0.025 and σy = 0.05 on the LSUN Bedroom dataset. DPS
achieved PSNR/LPIPS results of 24.81 / 0.362 and 24.08 / 0.400 for these noise levels, respectively, which are significantly
lower than the performance of our proposed CM4IR method.

Additionally, DPS requires 1000 NFEs per image, coupled with a much larger per-iteration computational complexity due
to computing the model’s Jacobian, resulting in an extremely high computational cost. Each image takes approximately 75
seconds to process on the same hardware and using the same DM as the rest of the methods.

In contrast, our CM4IR method operates with only 4 NFEs, reducing the computational time to just 0.159 seconds per
image while delivering superior results.

B.6. Reducing NFEs of additional DM-based method
DDNM [34] is another reconstruction method that leverages pretrained DMs with Back-Projection guidance [28]. As high-
lighted in [9], this method is designed and performs well for noiseless observations. Notice that DDNM utilizes guided DDIM
scheme, so like DDRM and DiffPIR, we can explore if its performance drop when reducing the NFEs can be mitigated by
our modified noise injection.

In Table 9, we present results for reducing the NFEs of DDRM, DiffPIR and DDNM in the noiseless super-resolution task

13



using the LSUN Bedroom validation set. As we can see, our noise injection mechanism improves PSNR, while mitigating
LPIPS drops.

Table 9. Reducing NFEs for DM-based methods. PSNR [dB] (↑) and LPIPS (↓) results on LSUN Bedroom validation set.

MethodNFEs, {τn} 20 NFEs 4 NFEs, auto-calculated 4 NFEs, optimized 4 NFEs with our ẑ− instead of ẑ

SRx4, σy = 0.0 DDRM 26.27 / 0.251 25.90 / 0.272 25.92 / 0.268 26.31 / 0.261

SRx4, σy = 0.0 DiffPIR 25.92 / 0.287 25.73 / 0.309 25.69 / 0.319 26.30 / 0.271
SRx4, σy = 0.0 DDNM 26.33 / 0.242 25.93 / 0.268 26.03 / 0.263 26.38 / 0.262

B.7. Additional inpainting results
In this subsection, we explore additional inpainting scenario - removal of superimposed text. For reproducibility and fair
comparison we use the same text mask, shown in Figure 14, for all images, and the same median initialization for all
methods. The results in Table 10 show the advantages of our method.

Table 10. Removal of superimposed text. PSNR [dB] (↑) and LPIPS (↓) results on LSUN Bedroom validation set.

Task Method CM (40) CoSIGN (task spec.) DDRM (20) DiffPIR (20) CM4IR (Ours)

Inpaint. (text) σy=0.025 30.86 / 0.189 23.90 / 0.296 33.33 / 0.119 30.95 / 0.198 34.94 / 0.087

B.8. Additional dataset
In this section, we evaluate CM4IR also for ImageNet 64×64 for SR with bicubic downsampling of factor 2 and different
noise levels. This factor allows to obtain meaningful recoveries despite the low resolution of the original 64×64 images. The
results are presented in Table 11, and show that CM4IR outperforms the other methods in terms of PSNR and has competitive
LPIPS despite using only 4 NFEs.

Table 11. Bicubic SRx2 for ImageNet 64x64. PSNR [dB] and LPIPS.

Task Method CM (40 NFEs) DDRM (20 NFEs) DiffPIR (20 NFEs) CM4IR (Ours, 4 NFEs)

SRx2, σy=0.01 27.33 / 0.165 29.26 / 0.104 28.64 / 0.132 30.11 / 0.122

SRx2, σy=0.025 25.98 / 0.235 28.38 / 0.134 27.10 / 0.163 29.20 / 0.148

SRx2, σy=0.05 24.51 / 0.309 27.02 / 0.178 23.65 / 0.250 27.74 / 0.188

B.9. More qualitative results
In this subsection, we present visual results for the different tasks.

14



Original Observation

DiffPIR DDRM CM (40) CoSIGN CM4IR (ours)

Original Observation

DiffPIR DDRM CM (40) CoSIGN CM4IR (ours)

Figure 9. Gaussian deblurring with noise level 0.025

Original Observation

DiffPIR DDRM CM (40) CM4IR (ours)

Figure 10. Gaussian deblurring with noise level 0.025
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Original Observation

DiffPIR DDRM CM (40) CoSIGN CM4IR (ours)

Figure 11. Gaussian deblurring with noise level 0.05

Original Observation

DiffPIR DDRM CM (40) CM4IR (ours)

Figure 12. Gaussian deblurring with noise level 0.05

Original Observation

DiffPIR DDRM CM (40) CoSIGN CM4IR (ours)

Figure 13. Removal of superimposed text with noise level 0.025
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Original Observation

DiffPIR DDRM CM (40) CoSIGN CM4IR (ours)

Figure 14. Removal of superimposed text with noise level 0.025

Original Observation

DiffPIR DDRM CM (40) CM4IR (ours)

Figure 15. Super-resoulution (80%) with noise level 0.025

Original Observation

DiffPIR DDRM CM (40) CoSIGN CM4IR (ours)

Figure 16. Inpainting (80%) with noise level 0.0
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Original Observation

DiffPIR DDRM CM (40) CoSIGN CM4IR (ours)

Figure 17. Inpainting (80%) with noise level 0.025

Original Observation

DiffPIR DDRM CM (40) CM4IR (ours)

Figure 18. Inpainting (80%) with noise level 0.025
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(a) Original (b) Observation (c) 20 NFEs (d) 4 NFEs, auto (e) 4 NFEs, optimized (f) 4 NFEs, ours

Figure 19. Reducing NFEs for DDNM, Super-resolution with σy = 0.0

(a) Original (b) Observation (c) 20 NFEs (d) 4 NFEs, auto (e) 4 NFEs, optimized (f) 4 NFEs, ours

Figure 20. Reducing NFEs for DiffPIR, Super-resolution with σy = 0.025

(a) Original (b) Observation (c) 20 NFEs (d) 4 NFEs, auto (e) 4 NFEs, optimized (f) 4 NFEs, ours

Figure 21. Reducing NFEs for DDRM, Super-resolution with σy = 0.05
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