
A. Illustrative example: merging two tasks
with rank-1 approximation

Consider merging two distinct tasks by selecting only the
first singular vector and singular value from the SVD for
each task. This setting yields the following setup for each
layer Li: | |

u1Li
u2Li

| |

[ σ1Li
0

0 σ2Li

] [ − vT1Li
−

− vT2Li
−

]

In this formulation, u1Li
originates from task 1 and u2Li

from task 2, with analogous assignments for the singular
vectors v and singular values σ.

To elucidate the interaction between tasks, we exam-
ine three distinct cases, considering a single layer, thereby
omitting the layer index Li:
1. Orthogonal Singular Vectors: when u1 and u2 (respec-

tively v) are orthogonal, the similarity matrix U⊤U (re-
spectively V ⊤V ) is given by:[

1 0
0 1

]
The zeroes in the off-diagonal elements indicate no in-
terference between the tasks. Consequently, the orthog-
onal components derived from different tasks operate in-
dependently, ensuring that each task does not affect the
other.

2. Collinear Singular Vectors: when u1 and u2 (respec-
tively v) are collinear, either aligned in the same direc-
tion (angle of 0 degrees) or in the opposite direction (an-
gle of 180 degrees), the similarity matrix U⊤U (respec-
tively V ⊤V ) takes the form:[

1 ⟨u,±u⟩
⟨±u, u⟩ 1

]
If the singular vectors are perfectly aligned (0 degrees),
then u1 = u2 = u, simplifying the diagonal elements
to ⟨u, u⟩ = ∥u∥2 = 1. Conversely, if the singular vec-
tors are oppositely aligned (180 degrees), u1 = −u2,
resulting in ⟨u,−u⟩ = −1 Thus, the similarity matrices
becomes: [

1 ±1
±1 1

]
This structure reveals complete interference between the
tasks: a double scaling effect when the vectors agree and
complete cancellation when they disagree.

3. Partially Collinear Singular Vectors: when u1 and u2

(respectively v) are partially collinear, with the angle be-
tween them ranging from slightly greater than 0 degrees
to less than 90 degrees or slightly more than 90 degrees

to less than 180 degrees, similarity matrices expressed
as: [

1 ⟨u1, u2⟩
⟨u2, u1⟩ 1

]
In this case, the overlap between singular vectors induces
a partial interaction between the tasks. The degree of in-
terference, whether it is constructive or destructive, is
proportional to the cosine of the angle between the sin-
gular vectors. This partial collinearity leads to subtle in-
terplay, where the tasks influence each other to a degree
dictated by their vector alignment.
This example underscores the critical role of sin-

gular vector alignment in model merging, highlighting
how orthogonality ensures independent task performance,
collinearity leads to maximal interference and partial
collinearity results in an intermediate level of task interac-
tion.

B. Additional details
B.1. Implementation details and computational re-

sources
Normalized Accuracy To address the varying difficulties
of the task, we report both normalized and absolute accu-
racies in our results. The normalized accuracy provides a
relative performance metric by comparing the accuracy of
the multi-task model to that of individually fine-tuned mod-
els. Specifically, the normalized accuracy is calculated as:

Normalized Accuracy =
1

T

T∑
i=1

accuracy(θMT , ti)

accuracy(θfti , ti)
(9)

where T is the total number of tasks, θMT represents the
multi-task model and θfti denotes the individually fine-
tuned model for task ti. This metric allows for a more
fair comparison by adjusting for the baseline performance
of each task.

Datasets for tasks All benchmarks were performed by in-
tegrating the codebase provided by Wang et al. [46]. In line
with the principles of PEFT, we reused the already existing
model checkpoints in the codebase for both the models and
classification heads without additional fine-tuning.

Implementation Our method utilizes the SVD, a matrix
decomposition technique applicable to two-dimensional
matrices. For layers that are not represented as matrices
(e.g., normalization layers) we default to standard Task
Arithmetic. In particular, we employ Knut’s algorithm
[47] to compute the average efficiently. This ensures that
all fine-tuned model task layers, regardless of their struc-
ture, are appropriately integrated into the merged model.
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Figure 9. Absolute accuracy of a ViT-B-16 merged over 8, 14, and 20 tasks, respectively.
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Figure 10. Absolute accuracy of a ViT-L-14 merged over 8, 14, and 20 tasks, respectively.

Compute Resources We utilize PyTorch as deep learn-
ing framework. All the merging and evaluations were con-
ducted on an NVIDIA 4060Ti GPU with 16GB of mem-
ory, and an Intel i7-6800K CPU equipped with 64GB
of RAM. For experiments that need more than 64GB of
RAM, we resort to a shared HTCondor cluster equipped
with NVIDIA P6000 GPUs.

B.2. Hyperparameter Settings
Following Task Arithmetic [22] and Consensus
TA [46], we apply a single scaling factor, α, to adjust the
multi-task vector within the model merging techniques out-
lined in Table 2. This scaling factor is optimized, when
feasible, over the range {0.0, 0.1, ..., 2.9, 3.0}, with the
optimal value selected based on the average validation per-
formance across all tasks. However, as discussed in Sec-
tion 6.3, our experimental findings indicate that the pro-
posed TSV-Merge method does not strictly depend on this

hyperparameter, as the marginal performance gains from
tuning α do not justify the computational resources re-
quired for the evaluation on the validation datasets. Con-
sequently, this allows us to eliminate the necessity for val-
idation datasets and the corresponding labels from the pre-
requisites of the method, further simplifying the practical-
ity and resource usage of the approach. The evaluation is
performed on batch of 32 images. To produce Fig. 7 we
selected the following subsets of 8 tasks from the 20 avail-
able, using the whitening method to speed up computation,
the number in the image is the index indicating the subset:
0. SVHN, SUN397, STL10, OxfordIIITPet,

Flowers102, CIFAR100, PCAM, FER2013
1. PCAM, FER2013, CIFAR10, Food101,

FashionMNIST, RenderedSST2, EMNIST,
KMNIST

2. EuroSAT, GTSRB, MNIST, RESISC45, SVHN,
SUN397, STL10, OxfordIIITPet
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Figure 11. Mean absolute accuracy of the ViT-B-16 model
across increasing fractions of retained singular components, av-
eraged over 20 tasks. The red line represents the average accu-
racy of the original fine-tuned models with full-rank task matrices,
while the green line shows the accuracies using low-rank approxi-
mations.

3. Cars, DTD, EuroSAT, GTSRB, MNIST, RESISC45,
SVHN, SUN397

4. Cars, DTD, EuroSAT, GTSRB, FashionMNIST,
RenderedSST2, EMNIST, KMNIST

5. MNIST, RESISC45, SVHN, SUN397, STL10,
OxfordIIITPet, Flowers102, CIFAR100

6. STL10, OxfordIIITPet, Flowers102,
CIFAR100, PCAM, FER2013, CIFAR10, Food101

B.3. Storage cost calculation
Suppose we have a neural network comprising of L two-
dimensional layers, each of dimension d ×m, and N one-
dimensional layers of size c. The total number of parame-
ters in the network is therefore:

Params(NN) = L× (d×m) +N × c.

In standard Task Arithmetic, one must store the same
number of parameters to obtain a task vector. In contrast,
our approach provides the flexibility to select the number of
parameters to preserve based on storage constraints or the
desired needed performance, to adhere to the chosen con-
straints. Under the above assumptions, our method applies
the truncated SVD to each two-dimensional layer. This de-
composition yields two matrices of singular vectors, U and
V , and a vector of singular values, σ, specifically:
• U of size d× k,
• V of size k ×m,
• σ of size k,
where k = min(d,m). We select a reduced rank k′ ≪ k
to approximate each layer’s task matrix. Consequently, the
total number of parameters for TSV becomes:

Params(TSV) = L× ((d× k′) + k′ + (k′ ×m)) +N × c

To demonstrate that our method results in fewer stored pa-
rameters than the original parameter count, we require that
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Figure 12. Mean absolute accuracy of the ViT-L-14 model
across increasing fractions of retained singular components, av-
eraged over 20 tasks. The red line represents the average accu-
racy of the original fine-tuned models with full-rank task matrices,
while the green line shows the accuracies using low-rank approxi-
mations.

k′ < d×m
d+m+1 . This condition ensures:

Params(NN) > Params(TSV)

Substituting the expressions, yields:

L×(d×m)+N×c > L×((d×k′)+k′+(k′×m))+N×c

Simplifying, we obtain:

L× (d×m) > L× ((d× k′) + k′ + (k′ ×m))

(d×m) > ((d× k′) + k′ + (k′ ×m))

d×m > k′ × (d+ 1 +m)

k′ <
d×m

d+m+ 1
.

(10)

This inequality confirms that our method reduces the stor-
age requirements of a task vector when k′ < d×m

d+m+1 . Em-
pirical evidence from Figures 2, 11 and 12 suggests that
selecting k′ < 0.1 × k = 0.1 × min(d,m) is sufficient
to preserve most of the task performance, preserving the
main requirement of performance. Furthermore, it is easy
to prove that when choosing k′ = k

T , the inequality is al-
ways satisfied for T ≥ 3, respecting the main requirement
of limited storage usage.

C. Proofs
We hereby prove the claims outlined in the main
manuscript.

C.1. Characterization of the similarity matrices
Proposition C.1. The matrix Û⊤Û is positive definite.

Proof. We define Û⊤Û , where Û is a generic d × k rect-
angular matrix. Consequently, Û⊤Û is a k × k square ma-
trix. To establish that Û⊤Û is positive definite, it suffices



to demonstrate that for all non-zero vectors x ∈ Rk, the
following inequality holds:

x⊤Û⊤Ûx > 0.

This expression can be rewritten as:

x⊤(Û⊤Û)x = (Ûx)⊤(Ûx) = ∥Ûx∥2.

Here, ∥Ûx∥2 denotes the squared Euclidean norm of the
vector Ûx, which is always non-negative. Moreover, as-
suming that Û has full column rank, the norm ∥Ûx∥2 is
strictly positive for any non-zero vector x. Therefore, we
have:

∥Ûx∥2 > 0 for all x ∈ Rk, x ̸= 0.

This implies that:

x⊤Û⊤Ûx > 0 for all x ∈ Rk, x ̸= 0,

which confirms that Û⊤Û is positive definite.

Corollary C.2. Since Û⊤Û is positive definite, then Û⊤Û
is invertible.

Proof. From Proposition C.1, we have established that
Û⊤Û is a positive definite matrix. A positive definite ma-
trix, by definition, has all its eigenvalues strictly positive.
Let λ1, λ2, . . . , λk denote the eigenvalues of Û⊤Û . There-
fore, we have:

λi > 0 for all i = 1, 2, . . . , k.

The determinant of Û⊤Û is the product of its eigenval-
ues:

det(Û⊤Û) =

k∏
i=1

λi.

Since each λi is positive, their product is also positive:

det(Û⊤Û) > 0.

A matrix is invertible if and only if its determinant is
non-zero. Given that det(Û⊤Û) > 0, it follows that Û⊤Û
is invertible.

Therefore, Û⊤Û is invertible.

Low-rank Interf. ViT-B-16

approx. reduction 8 tasks 14 tasks 20 tasks

× × 79.6 (+0.0) 75.9 (+0.0) 70.8 (+0.0)
✓ × 79.6 (+0.0) 74.9 (-1.0) 70.0 (-0.8)
× ✓ 84.8 (+5.2) 79.0 (+4.1) 73.2 (+3.2)
✓ ✓ 93.9 (+9.1) 91.0 (+12.0) 86.5 (+13.3)

Table 5. Comparison of different versions of Task
Arithmetic, comprising either the low-rank approxima-
tion step, the interference reduction step, or both. The method
performing both corresponds to the proposed TSV-Merge.

C.2. Observations
Since Û⊤Û is a real symmetric matrix, it admits an eigen-
decomposition of the form

Û⊤Û = QΛQ−1 = QΛQ⊤,

where:
• Λ is a diagonal matrix containing the real eigenvalues of
Û⊤Û ,

• Q is an orthogonal matrix whose columns are the or-
thonormal eigenvectors of Û⊤Û , satisfying Q⊤ = Q−1.
The inverse of Û⊤Û exists (see Corollary C.2), and can

be expressed using its eigendecomposition as

(Û⊤Û)−1 = QΛ−1Q−1 = QΛ−1Q⊤.

Additionally, since Λ is a diagonal matrix with non-zero di-
agonal entries (Proposition C.1), its inverse Λ−1 is straight-
forward to compute, with each diagonal element given by

Λ−1 = diag
(

1

λi

)
,

where λi are the eigenvalues of Û⊤Û .
Furthermore, the eigenvalues of (Û⊤Û)−1 are 1

λi
, each

of which is positive since λi > 0 for all i (following by the
definition in Proposition C.1). Consequently, (Û⊤Û)−1 is
also a positive definite matrix.

These observations confirm that not only is Û⊤Û posi-
tive definite, but its inverse inherits this property due to the
positivity of its eigenvalues.

Low-rank Interf. ViT-L-14

approx. reduction 8 tasks 14 tasks 20 tasks

× × 88.6 (+0.0) 84.0 (+0.0) 78.1 (+0.0)
✓ × 87.9 (-0.7) 83.4 (-0.6) 77.2 (-0.9)
× ✓ 92.1 (+4.2) 86.8 (+3.4) 81.0 (+3.8)
✓ ✓ 97.0 (+4.9) 94.4 (+7.6) 92.5 (+11.5)

Table 6. Comparison of different versions of Task
Arithmetic, comprising either the low-rank approxima-
tion step, the interference reduction step, or both. The method
performing both corresponds to the proposed TSV-Merge.

C.3. Proof of Theorem 6.1
Theorem 6.1. Let T ∈ N such that T > 4. Define
U = [U1, . . . , UT ] as the matrix obtained by concatenat-
ing T orthogonal matrices Ui, each of shape n × n. Let
Û = [Û1, . . . , ÛT ] be the matrix formed by truncating each
Ui to its first k columns. Denote by X and X̂ the matrices
resulting from Procrustes orthonormalization of U and Û ,
respectively. If k ≤ nT−2

√
T

T , then

∥U −X∥F ≥ ∥Û − X̂∥F .



Proof. Let us consider the SVD decomposition of U and
Û : U = PuΣuPv and Û = RuΣ̂uRv . X and X̂ obtain as
X = PuP

⊤
v , X̂ = RuR

⊤
v respectively We first consider

the Frobenius norm of ||X − U ||F . Notice that the singular
values of U are the square root of the eigenvalues of Σu =
UU⊤.

UU⊤ =
∑N

i=1 UiU
⊤
i = TIn. As a consequence, the

eigenvalues of UU⊤ are all equal to T and the singular val-
ues are all equal to

√
T .

||X − U ||F = ||PuP
⊤
v − PuΣuP

⊤
v ||F

= ||Pu(I − Σu)P
⊤
v ||F

= ||In − Σu||F
= ||In −

√
TIn||F

=
√
n(
√
T − 1).

We are now left to compute ||X̂ − Û ||F . In this case,
we are not able to compute the exact norm without other
assumptions, but we can provide an upper bound that gives
us a sufficient condition to prove our statement. As before

||X̂ − Û ||F = ||In − Σ̂u||F

=

√√√√ n∑
i=1

(σ̂i − 1)2.

where σ̂ are the singular values of Û .

Notice that
∑n

i=1 σ̂
2
i = tr(Û Û⊤) = tr(Û⊤Û) and Û⊤U

is a Tk×Tk matrices with diagonal elements equal to one,
so tr(Û⊤Û) = kT .

Moreover,

n∑
i=1

σ̂i =

n∑
i=1

√
λi(Û Û⊤) (11)

≥

√√√√ n∑
i=1

λi(Û Û⊤) (12)

=

√
tr(Û Û⊤) =

√
Tk (13)

Notice that this upper bound is tight, indeed the sum
of the singular values of Û must lie within:

√
kT ≤∑n

i=1 σ̂i ≤ kT . The minimum
√
kT is achieved if all ma-

trices Ui are equals, on the other end, the maximum kT is
achieved if the kT columns are orthonormal.

Putting everything together,

||X̂ − Û ||F =

√√√√ n∑
i=1

(σ̂i − 1)2 (14)

=

√√√√n+

n∑
i=1

σ̂2
i − 2

n∑
i=1

σ̂i (15)

=

√√√√n+ kT − 2

n∑
i=1

σ̂i (16)

≤
√

n+ kT − 2
√
kT . (17)

So we have to check for what values of k it holds that√
n+ kT − 2

√
kT ≤ √n(

√
T − 1).

We have that√
n+ kT − 2

√
kT ≤

√
n+ kT ≤ √n(

√
T − 1) (18)

Equation 18 is satisifed if
k ≤ nT−2

√
T

T . This concludes the proof. Since k is
a positive number the inequaility of meaningful for T >
4.
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Figure 13. Singular Task Interference (STI) and average normal-
ized accuracy for Task Arithmetic and TSV-Merge on the
ViT-B-16model, evaluated across merges of 8, 14, and 20 tasks.

D. Additional experimental results
D.1. Per-dataset performance metrics
In Section 5.1, we present comprehensive results for indi-
vidual tasks using the ViT-B-32 model. Here we include
analogous radar plots for the ViT-B-16 model in Figure 9
and the ViT-L-14 model in Figure 10. The analyses of
these models reveal findings consistent with those reported
for ViT-B-32 in the main text.
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Figure 14. Detailed view of Singular Task Interference (STI) across layers in a ViT-B-32 for 20 tasks. The interference trend is high in
early layers and decreases later. Here, the pattern for each transformer block is observable, the interference first increases and then drops
in each attention-out layer.

D.2. Extended analysis
D.2.1. Whitening vs. SVD
As we have seen in Section 4.2, applying a whitening trans-
formation to the matrices of task singular vectors is mathe-
matically equivalent to solving the Orthogonal Procrustes
problem. However, implementing these two approaches
may yield different results depending on the distinct matrix
decomposition algorithms employed. In this study, we used
PyTorch to compute both eigendecomposition and SVD,
observing slightly different results that may be attributed
to numerical errors. To more robustly compute the matrix
square root for the eigendecomposition case, we compute

Λ− 1
2 = diag

(
1√
|λi|+ ϵ

)

where ϵ = 1e−12 prevents division by 0 and the absolute
value avoids numerical errors producing small negative val-
ues in magnitude less than 1e−6.

D.2.2. Impact of rank
The Section 3.2 shows that the task matrices of a
ViT-B-32 are inherently low-rank and a small percentage
of TSVs is enough to approximate each layer with satisfy-
ing results. We here provide the same plots for the models
ViT-B-16 (Figure 11) and ViT-L-14 (Figure 12), ob-
serving analogous findings. In fact, the first shows a de-
crease of 1.3% mean accuracy at 3% of retained TSVs and
the second shows a reduction of 1.1% mean accuracy at 2%

of maintained TSVs. We refer to Figure 17 for a breakdown
of this analysis.
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Figure 15. Singular Task Interference (STI) and average normal-
ized accuracy for Task Arithmetic and TSV-Merge on the
ViT-L-14model, evaluated across merges of 8, 14, and 20 tasks.

D.2.3. Extended Ablation study
In Section 6.1, we reported an ablation study on the
ViT-B-32 model to evaluate the individual contributions
of low-rank approximation and interference reduction to the
overall performance of our TSV-Merge method. To fur-
ther mark our findings and demonstrate the generality of
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our approach across different model sizes, we report in Ta-
ble 5 the ablation study for the ViT-B-16 model and in
Table 6 ViT-L-14 model. The experimental setup follows
the one described in Section 6.1. We assess the impact of
the two key components of TSV-M, low-rank approxima-
tion and interference reduction, by considering the follow-
ing four configurations:
1. Baseline Task Arithmetic: the standard TA method

without any modification.
2. Low-Rank Approximation: apply only low-rank ap-

proximation to task matrices without any interference re-
duction step.

3. Interference Reduction: apply interference reduction
to the full-rank task matrices without any pre-step of
low-rank approximation.

4. TSV-Merge: Combining both low-rank approximation
and interference reduction.

D.2.4. Effect of task interference
We provide here the same plots shown in Figure 8, for the
ViT-B-16 we show it in Figure 13 and respectively for
ViT-L-14 in Figure 15. The finding remains valid also
for these models, all the instances show a significant gain in
accuracy when the interference is removed.

D.2.5. Detailed per-layer task interference
We show in Fig. 14 the per-layer task interference, ex-
tending the block-level analysis in Figure 6 in the main
manuscript.

D.2.6. Compression analysis
Our experimental results (see Table 3 in main manuscript)
demonstrate that TSV outperforms TALL-Mask on the
large-scale ViT-L-14 model for 14 and 20 tasks bench-
marks, signaling a scaling advantage. With a fixed-budget
analysis, we show in Figure 16 that unlike TALL-Mask,
which has a fixed requirement defined by model size and
number of tasks, we allow flexible compression rates by al-
lowing rank selection. This enables more aggressive com-
pression, as highlighted in the green region in the figure.

D.2.7. Test-time adaptation
We compare our method with AdaMerging [52] for
test-time adaptation. On a subset of 7 tasks from the

8 task benchmark, AdaMerging achieves an accuracy
of 85.43%, while our TSV-M attains 88.93%, an im-
provement of approximately 3.5% without requiring any
test-time adaptation. Additionally, when integrating an
AdaMerging-style test-time adaptation into our frame-
work, the accuracy increases to 89.87%, demonstrating the
complementary benefits of combining TSV-M with test-
time adaptation techniques.

E. Theoretical motivations and analysis
E.1. Theoretical foundation - Empirical design
The TSV-C method is grounded in the well-established
framework of low-rank approximation for compression
(e.g., [12]). Instead, TSV-M is motivated by more empir-
ical foundations: it is designed to achieve noise reduction
through low-rank approximation and to eliminate interfer-
ence via orthogonalization. Low-rank truncation serves to
filter out insignificant variations, while orthogonalization
ensures that task-specific singular vectors remain indepen-
dent, preserving individual task performance.

E.2. Heuristic interference measure
Given that a formal definition of interference in model
merging is not yet established, we adopt an operational defi-
nition: interference is any cross-task interaction that hinders
the merging process. Our proposed Singular Task Interfer-
ence measure is empirically validated by the consistent per-
formance improvements observed when its value is mini-
mized. Furthermore, we examine the relationship between
overlapping singular vectors and knowledge sharing. Un-
like multi-task learning (MTL), which enables coordinated
knowledge sharing through joint training, the independent
task-wise finetuning in model merging may evolve in de-
structive overlaps in the activations, resulting in interference
rather than beneficial knowledge sharing. By orthogonaliz-
ing the singular vectors, our approach effectively mitigates
these overlaps, reducing interference and enhancing the per-
formance of the merged model.
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Figure 18. Breakdown of classification accuracy in confusion matrices of a single merged ViT-L-14 model over 20 tasks. The numbers
are omitted when they are too small to display.


	Illustrative example: merging two tasks with rank-1 approximation
	Additional details
	Implementation details and computational resources
	Hyperparameter Settings
	Storage cost calculation

	Proofs
	Characterization of the similarity matrices
	Observations
	Proof of Theorem 6.1

	Additional experimental results
	Per-dataset performance metrics
	Extended analysis
	Whitening vs. SVD
	Impact of rank
	Extended Ablation study
	Effect of task interference
	Detailed per-layer task interference
	Compression analysis
	Test-time adaptation


	Theoretical motivations and analysis
	Theoretical foundation - Empirical design
	Heuristic interference measure


