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Supplementary Material

In the following, we provide additional technical and
implementation details, and further analyses. Specifically:
• Sec. 6 describes how we implemented and tested the base-

lines presented in Sec. 4 (Main).
• Sec. 7 presents detailed results with different backbone

VLMs.
• Sec. 8 provides a detailed description of the box-free set-

ting, including how we adapted zero-shot and cache-based
models to it, as well as extended results.

• Sec. 9 introduces additional ablation studies to those pre-
sented in Sec. 4.2 (Main), and provides extended results
for the ablations in Main.

• Sec. 10 offers additional qualitative results.
• Sec. 11 lists all the prompt templates that COMCA uses.
• Sec. 12 provides details on the hardware employed to

conduct experiments.
• Sec. 13 comments on the limitations of COMCA, and

provides possible future research directions to address
them and improve attribute-detection models’ capabilities.

6. Baselines

To conduct a detailed evaluation of COMCA, we implement
several related works and test them in the open-vocabulary
attribute detection task. They are presented in Sec. 4 of
the main paper (Main), and this section provides additional
details. This section also presents Tab. 6, an extended version
of Tab. 1 (Main) providing (i) detailed results on all parts
of the distributions of OVAD and VAW, (ii) details on the
configuration used for each cache, and (iii) additional results
with more configurations.
Image-based. It is a simple baseline that disregards attribute-
object compositions, thus making it possible to understand
their effects. In addition, it uses no textual input, as it focuses
on image-to-image retrieval. As a result, this strategy does
not suffer from potential noise in prompts and/or in the
text-to-image retrieval process. The cache is constructed
on a per-input basis, i.e., specific to each input image. The
rationale is that, given an image, its closest ones should bear
the same semantic. Given an input image x, it retrieves the
K shots xc using no other prior knowledge, i.e., it leverages
no LLM and no web-scale database to estimate attribute-
object compatibility. As a result, this method has two key
characteristics: (i) the retrieved images are the most similar
to the input x; (ii) it provides no labels, as image-to-image
retrieving is associated to no textual prompt. Consequently,
image-based works only with our soft labeling mechanism,
as it provides no one-hot labels.
TIP-Adapter + IAP. This approach leverages TIP-

Adapter [18] and IAP [9, 10] (indirect attribute prediction),
using TIP-Adapter to predict the object’s category, and IAP
to recognize the attributes, conditioned on the predicted cat-
egory. IAP was introduced to take into account the effect
of the class (i.e., object) on the attribute distribution, i.e., to
condition the probability of observing an attribute given a
class. As a result, IAP exploits knowledge on the object cat-
egory, thus treating attributes differently for different objects.
IAP is defined as:

p(am|x) =
C∑
i=1

p(am|yi)p(yi|x), (1)

where C is the number of classes and p(yi|x) is the proba-
bility of input image x of belonging to class yi. We use TIP-
Adapter to obtain this classification probability (i.e., p(yi|x),
with the cache built only for objects), while p(am|yi) is the
probability distribution of attribute am of being observed
together with yi. This is estimated on CC12M, and it is the
same that we use to construct our cache.
TIP-Adapter. We directly apply TIP-Adapter [18], as origi-
nally defined, to directly detect attributes. However, since it
was originally designed for object classification, we adapt it
to our task by constructing its cache on attributes, rather than
objects. We populate its cache in various ways: sampling
K shots per attribute (|A| ×K) and sampling K shots per
attribute-object pair (|O| × |A| ×K). These two alternatives
cover both possible ways to adapt TIP-Adapter to our task.
We note that we are unable to run the all attribute-object
pairs (|O|×|A|×K) setting on VAW when K > 1, as mem-
ory requirements increase dramatically. We estimate some
hundred gigabytes of RAM would be necessary to handle all
the 2, 260 categories times 620 attributes times 16 shots per
pair.
SuS-X. Similarly, we implement SuS-X [14], a successor
of TIP-Adapter that leverages a more advanced inference
formulation based on the KL-divergence, while computing
the scores for an input x. We construct its cache by sampling
K images for each attribute, thus filling it with |A| × K
samples, similarly to the original implementation.

6.1. Full results
In Tab. 6, we propose and compare with seven baselines on
OVAD and VAW. We test image-based by constructing a
cache with (i) K samples and (ii) |A| × K samples, with
K = 16 in both cases. Notably, the smaller cache performs
better, scoring 16.8 mAP vs 9.4 mAP on OVAD and 52.9
mAP vs 31.5 mAP on VAW. We hypothesize this is due to the
inaccuracies in the retrieval process, which considers solely



Method
Configuration OVAD [2] VAW [12]

Type Size mAP Head Medium Tail mAP Head Medium Tail

Z
er

o
sh

ot

CLIP [5] RN50 11.8 41.0 11.7 1.4 35.3 37.8 35.1 26.2
CLIP [5] ViT-B/32 17.0 44.3 18.4 5.5 50.0 51.0 50.9 43.2
CLIP [5] ViT-L/14 18.3 44.4 20.5 6.4 51.0 51.4 52.5 45.0

C
ac

he
-b

as
ed

Image-based I K 16.8 45.8 19.2 3.5 52.9 53.7 53.8 46.4
I |A| ×K 9.4 36.8 8.2 1.3 31.5 35.7 29.7 21.2

TIP-Adapter [18] + IAP [10] O |O| ×K 15.1 43.3 17.8 1.7 27.7 32.4 25.5 16.6

TIP-Adapter [18]
A |A| ×K 16.7 44.4 19.7 3.1 57.5 57.5 59.4 51.2
AO |O| × |A| 9.8 38.3 8.9 0.9 53.4 53.8 54.8 47.7
AO |O| × |A| ×K 10.6 41.2 9.6 1.0 - - - -

SuS-X [14] A |A| ×K 20.2 48.9 24.6 4.5 30.2 33.8 28.8 20.3

COMCA AO |A| ×K 27.4 54.3 34.6 9.0 58.1 58.2 59.9 51.7

Tr
ai

ni
ng

ba
se

d

OVAD [2] Train size: 110K 21.4 48.0 26.9 5.2 - - - -
OvarNet [4] Train size: 190k 28.6 58.6 35.5 9.5 68.5 - - -
ArtVLM [19] Train size: N/A - - - - 71.9 75.0 72.1 59.4
LOWA [7] Train size: 1.33M 18.7 58.0 20.4 2.6 42.6 46.4 41.0 32.9

Table 6. Comparison with state of the art. Extended version of Tab. 1 (Main), reporting (i) details on head, medium, and tail on OVAD and
VAW, and (ii) details on the configuration used. All cache-based models are tested with CLIP ViT-B/32 [5] as backbone. Green indicates
COMCA. For ArtVLM [19], we report its best scores. Bold indicates best among training-free methods. I refers to images, O to objects, A
to attributes, and AO to attribute-objects.

the input image x, with no regard to the target attributes, e.g.,
the object may dominate the retrieval content, producing
a cache less informative w.r.t. attribute labels. The smaller
cache, despite its higher similarity to the input, might contain
less noisy samples, thus allowing our soft labeling scheme
to produce better labels.

Next, we test IAP, using TIP-Adapter as our object clas-
sifier. The cache contains |O| × K elements, and we set
K = 16. Its performance is lower than the image-based
baseline’s, as it achieves 15.1 mAP on OVAD (i.e., -1.7
mAP w.r.t. image-based) and 27.7 mAP on VAW (i.e., -
25.2 mAP w.r.t. image-based). This is a consequence of the
constrained attribute predictions, inherited from the object
ones. As p(am|yi) depends only on the category, different
objects within the same category will have the exact same
attribute probability. While the input image x influences
the probability p(yi|x) that it belongs to category yi, it has
no direct influence on p(am|yi). Therefore, if two objects
with completely different visual attributes have the same
class probabilities, this baseline will assign them the same
attribute probabilities.

When including attributes in TIP-Adapter, we consider
three distinct settings, covering various ways to extend its
cache design to our task. We find that the smaller cache
(i.e., |A| × K), having the same size as COMCA’s, is the
best-performing one. However, on OVAD it underperforms
its backbone when used in the zero-shot setting (16.7 vs 17.0
mAP), while it surpasses it by +7.5 mAP on VAW.

Lastly, we compare with SuS-X, which outperforms all

other baselines on OVAD, achieving 20.2 mAP, i.e., +3.5
w.r.t. TIP-Adapter when constructing the cache in the same
way. However, on VAW it struggles, scoring only 30.2 mAP,
i.e.-27.3 mAP w.r.t. TIP-Adapter.

COMCA outperforms all these baselines on both bench-
marks, with a gap of up to +18.0 mAP compared to image-
based on OVAD and up to +27.9 mAP w.r.t. SuS-X on VAW.
Specifically, on OVAD COMCA surpasses TIP-Adapter by
+15.0 mAP on average over all three configurations of TIP,
and SuS-X by +7.2 mAP. On VAW, COMCA has a gain over
image-based of +26.6 mAP and on TIP-Adapter + IAP of
+30.4 mAP. Compared to SuS-X, COMCA’s gap is +27.9
mAP, and obtains an average increase of +2.65 mAP w.r.t.
TIP-Adapter, always surpassing it.

7. Backbones
COMCA is a backbone-agnostic approach, therefore it sup-
ports virtually any vision-language model that can match
text and images, similar to CLIP. Tab. 7 is the extended ver-
sion of Tab. 2, reporting detailed results on all parts of the
distribution of OVAD and VAW. Results are consistent with
those of Tab. 2, with COMCA always improving the model
it is applied to, across all metrics.

8. Box-free setting
As explained in Sec. 4.1, we primarily focus on attribute
recognition, thus adopting the box-given setting as our com-
petitors [2, 4]. In Tab. 3, we extend COMCA to the box-free



Method OVAD [2] VAW [12]

Backbone COMCA mAP Head Medium Tail ∆mAP mAP Head Medium Tail ∆mAP

11.8 41.0 11.7 1.4 35.3 37.8 35.1 26.2CLIP RN50 [5]
✓ 19.2 48.6 21.7 5.6 +7.4 51.1 51.8 52.4 44.2 +15.8

17.0 44.3 18.4 5.5 50.0 51.0 50.9 43.2CLIP ViT-B/32 [5]
✓ 27.4 54.3 34.6 9.0 +10.4 58.1 58.2 59.9 51.7 +8.1

18.3 44.4 20.5 6.4 51.0 51.4 52.5 45.0CLIP ViT-L/14 [5]
✓ 24.8 53.0 30.6 7.6 +6.5 61.0 60.5 63.5 55.6 +10.0

13.7 41.5 15.2 2.0 52.5 52.1 54.6 47.8SigLIP ViT-B/16 [17]
✓ 22.1 49.5 27.2 6.1 +8.4 59.8 59.0 62.4 54.7 +7.3

15.1 43.7 16.7 2.9 49.6 50.7 50.6 42.6CoCa ViT-B/32 [15]
✓ 24.4 50.7 31.7 6.1 +9.3 51.4 52.1 52.6 44.7 +1.8

14.4 42.8 15.4 3.0 49.8 50.7 50.9 42.9CoCa ViT-L/14 [15]
✓ 25.9 51.7 33.7 7.1 +11.5 54.5 54.7 56.2 48.3 +4.7

15.9 44.5 18.3 2.8 51.0 51.3 52.0 46.6BLIP [11]
✓ 22.7 51.3 27.3 7.0 +6.8 56.0 55.8 58.1 50.6 +5.0

17.4 46.0 20.0 4.1 54.8 56.4 55.7 46.2X-VLM [16]
✓ 28.4 54.8 37.7 7.5 +11.0 57.7 59.4 59.4 46.9 +2.9

Table 7. Box-given results with different backbones. Extended version of Tab. 2 (Main). Green indicates COMCA applied on top of the
backbone. ∆ indicates improvements w.r.t. the corresponding baseline.

setting by introducing an object detector. In Tab. 8, we show
the complete version of Tab. 3, reporting the results on the
head, medium, and tail distributions of OVAD. In addition,
Tab. 8 reports results of all zero-shot and cache-based models
with all five detectors of the YOLOv11 family [8], i.e., from
the smallest “N” to the largest “X”. Specifically, we evaluate
CLIP RN50 [5], CLIP ViT-B/32 [5], and CLIP ViT-L/14 [5]
as zero-shot models. For cache-based models, we report re-
sults for “image-based” (see Sec. 4 and Sec. 6), IAP [6, 10],
TIP-Adapter [18], SuS-X [14], and COMCA using CLIP
ViT-B/32 as backbone.
Implementation details. We introduce an object detector
fd : X → box, where box ∈ RN×4 is the set of N predicted
bounding boxes. We crop the input image on each predicted
bounding box, obtaining N crops, and we input each cropped
image to the model, as we do in the box-given setting.

We leverage the YOLOv11 family of object detectors,
testing all five models, which have an increasing number of
parameters: from 2.6M for “N”, up to 56.9M for “X”.
Results. In Tab. 8, we evaluate COMCA in the box-free
setting with five different detectors and two different back-
bones. Zero-shot models generally underperform their cor-
responding box-given counterpart, with larger models (e.g.,
CLIP ViT-L/14) scoring better performance than smaller
models (e.g., CLIP RN50). Interestingly, CLIP ViT-L/14
is the best-performing zero-shot model with all detectors
when considering mAP, as performance ranges from 13.0
with YOLOv11N to 13.4 with YOLOv11X. However, it is

always surpassed by other models on the head part of the
distribution. For instance, CLIP RN50 outperforms it by
+0.6 on head when using YOLOv11N.

When considering cache-based models, COMCA is the
best-performing approach on all metrics, regardless of the
backbone of choice. COMCA outperforms SuS-X by +6.0
mAP on average, across all object detectors. When compared
with the other competitors, the gap further increases: on
average, +11.8 mAP w.r.t. image-based, +11.3 mAP w.r.t. to
TIP-Adapter + IAP, and +11.1 mAP w.r.t. TIP-Adapter.

When introducing COMCA, we observe a constant in-
crease in performance as we increase the detector’s size.

9. Additional ablations

In this section, we provide the extended versions of the abla-
tion experiments presented in Sec. 4.2 (from Secs. 9.1 to 9.3),
and we perform additional ablation studies to further evalu-
ate the performance of COMCA. Extended results on cache
construction are provided in Sec. 9.1, complementing the
main findings in Tab. 4. Sec. 9.2 shows detailed results on all
parts of the distribution of OVAD and VAW for the ablation
on soft labels. In Sec. 9.3, we present results using varying
numbers of samples per attribute, specifically more and less
than 16, the value used in the main paper. Sec. 9.4 presents
detailed results for the ablation on Eq. (7). Next, Sec. 9.5
shows how different LLMs influence performance when they
provide generative scores to estimate attribute-object distri-
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Figure 7. Soft labels on cache-based baselines. We apply our soft labeling mechanism to TIP-Adapter [18] and SuS-X [14]. Yellow
represents mean average precision (mAP). Red represents performance on head, purple on medium, and green on tail. Brighter versions
of these colors represent performance with soft labels. Number of shots K is always 16 if not specified otherwise.

YOLOv11 Method
OVAD [2]

mAP Head Medium Tail

Z
er

o-
sh

ot

CLIP RN50 [5] 12.0 39.2 12.5 1.8
CLIP ViT-B/32 [5] 12.4 38.6 12.8 2.7N
CLIP ViT-L/14 [5] 13.0 38.6 12.9 2.7

CLIP RN50 [5] 12.3 39.8 12.6 2.1
CLIP ViT-B/32 [5] 12.4 39.3 12.8 2.4S
CLIP ViT-L/14 [5] 13.2 39.3 14.3 2.5

CLIP RN50 [5] 12.3 40.2 12.7 1.9
CLIP ViT-B/32 [5] 12.5 39.6 12.5 2.7M
CLIP ViT-L/14 [5] 13.4 39.7 14.3 2.9

CLIP RN50 [5] 12.3 40.6 12.6 1.9
CLIP ViT-B/32 [5] 12.4 39.9 12.5 2.5L
CLIP ViT-L/14 [5] 13.4 39.9 14.4 2.7

CLIP RN50 [5] 12.3 40.7 12.7 1.8
CLIP ViT-B/32 [5] 12.4 39.9 12.6 2.4X
CLIP ViT-L/14 [5] 13.4 39.9 14.5 2.6

C
ac

he
-b

as
ed

Image-based 9.4 35.1 8.8 1.1
TIP-Adapter [18] + IAP [10] 9.9 36.6 9.4 1.0

TIP-Adapter [18] 10.1 35.6 9.9 1.3
SuS-X [14] 14.9 41.4 16.7 3.4

N

COMCA 20.2 46.3 24.8 5.4

Image-based 9.4 35.3 8.8 1.0
TIP-Adapter [18] + IAP [10] 9.9 36.7 9.2 1.0

TIP-Adapter [18] 10.1 35.9 9.8 1.2
SuS-X [14] 15.2 42.5 17.0 3.2

S

COMCA 21.1 47.7 26.0 5.6

Image-based 9.4 35.4 8.7 1.0
TIP-Adapter [18] + IAP [10] 9.8 36.9 9.2 1.0

TIP-Adapter [18] 10.1 36.0 9.8 1.2
SuS-X [14] 15.3 43.0 17.2 3.2

M

COMCA 21.5 48.4 26.4 6.0

Image-based 9.4 35.6 8.7 1.0
TIP-Adapter [18] + IAP [10] 9.9 37.0 9.2 1.0

TIP-Adapter [18] 10.1 36.1 9.8 1.2
SuS-X [14] 15.3 43.2 17.2 3.2

L

COMCA 21.6 48.7 26.5 6.0

Image-based 9.4 35.5 8.7 1.0
TIP-Adapter [18] + IAP [10] 9.9 37.1 9.2 1.0

TIP-Adapter [18] 10.1 36.2 9.7 1.2
SuS-X [14] 15.4 43.5 17.2 3.1

X

COMCA 21.7 49.0 26.6 6.1

Table 8. Results in the box-free setting. Extended version of
Tab. 3 (Main). Green indicates COMCA. Experiments for cache-
based models are conducted using CLIP ViT-B/32 [5] as backbone.

butions, as described in Sec. 3.2. Additionally, Sec. 9.6
replicates the ablation study conducted in TIP-Adapter [18]
on the hyperparameter λ, thus studying if its effect is similar
on COMCA’s cache. In Sec. 9.7, we compare image retrieval
(our default) with image generation. Lastly, Sec. 9.8 and
Sec. 9.9 explore two key components of our algorithm: the
hyperparameter α, which blends soft and hard labels, and the
normalization of final predictions. Importantly, we highlight
that α is set on VAW’s validation set, while λ = 1.17 is the
default value, taken from TIP-Adapter.

9.1. Cache construction
In Tab. 9, we report the complete results of the experiments
presented in Tab. 4 (Main). We provide details on head,
medium, and tail parts of the distributions of the OVAD and
VAW benchmarks. We note that Brute force cannot be run
on VAW due to the size of the target space: the cache would
be too large, and it cannot be practically tested. Results are
consistent with those of Tab. 4, showing the importance of
attribute-object compatibility to build the cache, and with
databases and LLMs providing complementary information.

We highlight that the cache construction process is fairly
lightweight: image retrieval and soft scoring (Sec. 9.2)
take ≈ 0.8 seconds per attribute and LLM-based scoring
(Sec. 9.5) takes up to 10 seconds per attribute. Both of
these operations occur before inference and take much less
time compared to training-based methods (e.g., 7 hours for
ArtVLM [19]). During inference, using the cache adds
only two matrix multiplications and one scaling operation
(Eq. (10)), resulting in a negligible +0.3% time overhead.

9.2. Soft labels
Tab. 10 shows the complete results of the ablation on soft
labels, presented in Tab. 5 (Main). The table includes scores
on all parts of the distributions of OVAD and VAW. Results
are consistent with those of Tab. 5, showing that soft labels
always increase performance by a significant margin.



Configuration
OVAD [2] VAW [12]

mAP Head Medium Tail mAP Head Medium Tail

Zero-shot [5] 17.0 44.3 18.4 5.5 50.0 51.0 50.9 43.2

Random 16.7 44.4 19.7 3.1 57.5 57.5 59.4 51.2
Brute force 10.6 41.2 9.6 1.0 - - - -
DB scores 18.6 46.8 22.5 3.7 54.1 53.7 55.8 50.1
LLM scores 21.1 51.5 25.0 5.6 55.4 56.0 57.0 47.9
DB + LLM scores 26.4 52.5 33.7 8.3 55.2 55.5 56.8 48.9

Table 9. Ablation on cache construction. Extended version of Tab. 4 (Main). Green indicates our configuration. Bold indicates the best
for each column. Results are without soft labels.

Configuration
OVAD [2] VAW [12]

mAP Head Medium Tail mAP Head Medium Tail

Zero-shot [5] 17.0 44.3 18.4 5.5 50.0 51.0 50.9 43.2

One-hot 26.4 52.5 33.7 8.3 55.2 55.5 56.8 48.9
Soft 26.7 53.6 33.8 8.5 53.2 54.3 53.9 46.6
- Sharpening [1] 21.5 49.4 26.0 6.0 27.7 32.4 25.5 16.6
- Softmax 24.5 52.2 30.3 7.6 58.5 58.7 60.3 52.4
- Eq. (9) 27.4 54.3 34.6 9.0 58.1 58.2 59.9 51.7

Table 10. Ablation on soft labels. Extended version of Tab. 5 (Main). Green indicates our default configuration. Bold indicates the best
for each column.

Configuration
OVAD [2] VAW [12]

mAP Head Medium Tail mAP Head Medium Tail

Baseline zero-shot [5] 17.0 44.3 18.4 5.5 50.0 51.0 50.9 43.2

K = 1 21.8 49.2 26.7 6.1 58.4 58.6 60.2 52.2
K = 2 22.8 50.7 27.8 6.8 58.4 58.6 60.3 51.8
K = 4 24.3 51.9 29.9 7.7 58.4 58.5 60.3 52.1
K = 8 26.0 54.6 32.2 8.2 58.4 58.6 60.2 51.9
K = 16 27.4 54.3 34.6 9.0 58.1 58.2 59.9 51.7
K = 24 27.1 54.6 34.6 8.2 57.8 58.1 59.4 51.6

Table 11. Ablation on the number of shots. Extended version of Fig. 5 (Main). Green indicates our default configuration. Bold indicates
the best for each column.

Configuration
OVAD [2] VAW [12]

mAP Head Medium Tail mAP Head Medium Tail

None 24.0 52.5 29.6 7.1 57.9 57.8 59.9 52.5
Sum 24.8 52.5 31.8 6.4 58.3 58.4 60.1 52.0
Multiplication – Eq. (7) 27.4 54.3 34.6 9.0 58.1 58.2 59.9 51.7

Table 12. Ablation on Eq. (7). Results of COMCA on OVAD using no CC12M prior (LLM only), CC12M combined with the LLM scores
using sum and multiplication , as in Eq. (7) (our default configuration). Bold indicates the best results.



Prior OVAD [2]

LLM CC12M mAP Head Medium Tail

21.0 52.2 24.8 5.3Gemma 7b
✓ 22.8 54.7 27.0 6.3

21.4 50.4 25.9 5.6LLaMa 2 7b
✓ 23.2 52.4 28.2 6.8

22.8 53.8 27.3 6.2LLaMa 3 8b
✓ 24.1 54.8 29.0 7.1

23.9 52.8 29.4 7.0Mistral
✓ 24.6 53.2 30.5 7.2

24.0 52.5 29.6 7.1GPT 3.5 Turbo
✓ 27.4 54.3 34.6 9.0

23.6 50.9 28.5 7.9GPT 4o-mini
✓ 25.4 53.0 30.3 9.7

Table 13. Ablation on LLM backbones. Comparison of different
LLMs to obtain the attribute-object compatibility score. COMCA

is tested by using LLM scores only, and combining them with the
prior extracted from CC12M [3]. Green indicates our default
configuration. Bold indicates the best performance.

λ
OVAD [2]

mAP Head Medium Tail

CLIP only 17.0 44.3 18.4 5.5

0 20.6 48.7 25.1 5.3
0.5 25.7 53.0 32.0 8.2
1.0 27.1 54.1 34.1 9.0
1.17 (TIP default) 27.4 54.3 34.6 9.0
2.0 27.4 54.3 34.9 8.7
3.0 27.2 54.1 34.8 8.4
4.0 27.1 53.9 34.7 8.2

Cache only 25.9 52.8 33.6 6.9

Table 14. Ablation on hyperparameter λ. We replicate TIP-
Adapter’s [18] ablation on λ to determine if COMCA’s cache be-
haves similarly. Green indicates the default configuration for
COMCA, the same used in TIP-Adapter. Bold indicates the best
performance.

In addition, we evaluate and demonstrate the effectiveness
of our soft-labeling mechanism by applying it to the TIP-
Adapter and SuS-X baselines in Fig. 7. We evaluate the same
four settings as in Tab. 6. Due to the impossibility of running
TIP-Adapter in the |O| × |A| ×K setting, with K = 16, as
explained in Sec. 6, we omit the plot in the figure.

We note that our soft labels always improve mAP perfor-
mance, with an average of +3.7 on OVAD and +0.8 on VAW.
Notably, it often leads to large performance increases on the
medium part of the distribution (up to +10.4), and it provides
significant boosts on the tail (up to +2.0).

9.3. Number of shots
We evaluate our model’s performance with different num-
bers of samples per attribute in the cache. Tab. 11 provides
an extended version of the results shown in Fig. 5, illustrat-
ing that more samples generally improve performance. On
OVAD [2], performance increases steadily from K = 1 to
K = 16, with a slight loss at K = 24. In contrast, VAW [12]
is less sensitive to the number of samples. We hypothesize
that this is due to our soft labeling mechanism, which may
yield diminishing returns as the number of attributes in-
creases (VAW has 620 attributes). Results are consistent
with those shown in Fig. 5 and confirm the ablation on the
number of shots shown in TIP-Adapter [18], where a modest
cache of 16 elements contains all the necessary information.

9.4. Prior combination
In Tab. 12, we assess changes in performance when changing
the interaction between the two priors – database and LLM.
We study three case, None, Sum, and Multiplication, con-
ducting experiments on both OVAD and VAW. In None, we

discard the database prior, i.e., the compatibility scores ex-
tracted from CC12M. In Sum, we sum the scores produced by
the LLM to the scores extracted from the web-scale database,
while in Multiplication, we follow our definition as in Eq. (7)
(refer to Main).

None is the worst strategy, because it excludes the infor-
mation from the web-scale database. This is supported by
the results presented in Fig. 6 in Sec. 4.1 in the Main paper.
When introducing the retrieval scores with Sum, we observe
an increase in performance: +0.8 mAP on OVAD and +0.4
mAP on VAW. Multiplication largely outperforms Sum on
OVAD, surpassing it by +2.6 mAP (+3.4 mAP w.r.t. None),
while it performs slightly worse on VAW, scoring 58.1 mAP
(-0.2 w.r.t. Sum). However, it is superior to None, with a gap
of +0.2 mAP.

9.5. Different LLMs

All experiments in the main paper, along with ablations in
both the Main and Supp. Mat., use GPT 3.5 Turbo as the
LLM for generative scores (Eq. (6)). In Tab. 13, we replace
GPT 3.5 Turbo both with GPT 4o-mini and with publicly
available LLMs that can be run locally. For computational
efficiency, we select models in the 7-8 billion parameters
range: Gemma 7b, LLaMa 2 7b, LLaMa 3 8b, and Mis-
tral. We evaluate each LLM’s performance using its scores
alone and in combination with retrieval scores (Eq. (5)), as
described in Eq. (7). GPT 4o-mini underperforms GPT 3.5
Turbo, which surpasses it by +2.0 mAP. However, GPT 4o-
mini outperforms all four open-source small models, with
an average gap of +1.7 mAP. Although open source mod-
els are surpassed by the GPT family of closed models, they
represent a valid open-source and cost-effective alternative.



Configuration
OVAD [2]

mAP Head Medium Tail

Retrieval
(CC12M) 27.4 54.3 34.6 9.0

Generation 28.0 57.2 34.9 9.1(Stable Diffusion XL)

∆ +0.6 +2.9 +0.3 +0.1

Table 15. Ablation on cache construction. Results on OVAD
when constructing the cache with retrieval or generation. Green
indicates our default configuration, which uses retrieval to populate
the cache. Bold indicates the best performance. ∆ indicates the
difference between generation and retrieval.
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Figure 8. Ablation on hyperparameter α. The blue line is
mAP on the validation set of VAW. The higher α, the larger the
contribution of soft labels.

In all cases, combining both sources yields better results,
with mAP gains of +1.8 mAP for Gemma 7b, +1.8 mAP
for LLaMa 2 7b, +1.3 mAP for LLaMa 3 8b, +0.7 mAP for
Mistral, and +1.8 mAP for GPT 4o-mini, thus reinforcing
the findings presented in Fig. 6 (Main).

9.6. Combining CLIP and cache scores
By default, we use the same value of λ = 1.17 as in TIP-
Adapter [18], but we analyze the effect of λ in Eq. (11),
where it is used to linearly combine vanilla CLIP scores
with cache scores. We evaluate its impact on COMCA in
Tab. 14. The first row, CLIP only, reports the results for
the vanilla CLIP model, as seen in our baseline in Tabs. 1
and 2 (CLIP ViT-B/32). In the subsequent rows, increasing
λ from 0 to 4 shows performance gains up to λ = 2.0,
with a slight decline decline afterward. Finally, Cache only
represents using only cache scores, which, while lower than
the combined approach, still outperforms CLIP only by +8.9
mAP.

9.7. Image retrieval vs generation
Our approach involves populating the cache with images
from CC12M [3], selected based on cosine similarity to a text
query describing an object and an attribute. Alternatively,
one could use a generative model, such as Stable Diffusion,
to create samples from the same query. To compare these
methods, we conducted an ablation study contrasting web-
scale image-to-text retrieval with text-to-image generation
using diffusion models. Results, shown in Tab. 15, reveal
no significant performance difference, with a 0.6 mAP gap
on OVAD favoring generation. Although retrieval is slightly
less effective, it is far more computationally efficient.

9.8. Alpha blending
We evaluate the effect of the α parameter, which controls the
blending of one-hot and soft labels, as outlined at the end of
Sec. 3.2. We set α to 0.6 on the validation set of VAW, thus

assigning a weight of 0.6 to soft labels and 1− 0.6 = 0.4 to
hard labels.

To understand the effect of this parameter, we perform
experiments on the validation set of VAW [12]. As shown
in Fig. 8, incorporating soft labels improves performance.
Starting at α = 0, which uses only one-hot labels, we see a
rapid increase in performance, peaking at 67.8 mAP when
α = 0.6. Beyond this point, performance remains constant,
slightly decreasing to 67.7 mAP with α = 1.0.

We hypothesize this behavior is due to the nature of one-
hot and soft labels. One-hot labels focus solely on the at-
tribute in the prompt, ignoring all other attributes in the
image. Relying only on hard labels reduces the task to a
multiclass problem, where only one attribute is considered
positive and the rest negative. Conversely, using only soft
labels yields results similar to CLIP baselines, as both ap-
proaches would use the same scoring mechanism. The best
performance is achieved by balancing the contributions of
both hard and soft labels.

9.9. Cache scores normalization
In Tab. 16, we analyze the effect of scaling the scores from
cache-based predictions by comparing three strategies: no
normalization (no norm, as in [18]), min-max normal-
ization (subtracting the minimum score and dividing by the
maximum), and our approach of scaling by the maximum
value (max) used in Eq. (11). Additionally, we apply softmax
within ηA to ensure numerical stability and produce a proper
probability distribution. The results, shown at the bottom
of Tab. 16, indicate that no normalization yields poor per-
formance (8.7 mAP on OVAD, 40.3 mAP on VAW), while
min-max improves results (25.9 mAP on OVAD, 56.6 mAP
on VAW). Our method achieves the best performance overall,
with 27.4 mAP on VAW and 58.1 mAP on VAW.

9.10. Seen vs unseen bias
We note that by omitting the training stage (i) COMCA is
not exposed to training biases and (ii) it is impractical to



Configuration
OVAD [2] VAW [12]

mAP Head Medium Tail mAP Head Medium Tail

Baseline zero-shot [5] 17.0 44.3 18.4 5.5 50.0 51.0 50.9 43.2

no norm 8.7 36.0 7.4 0.6 40.3 43.1 39.6 31.7
min-max norm 25.9 53.4 32.1 8.67 56.6 56.9 58.5 49.7
max norm, softmax 27.4 54.3 34.6 9.0 58.1 58.2 59.9 51.7

Table 16. Ablation on scores normalization. Results with different cache score normalization strategies. Green indicates the default
configuration for COMCA.

identify the seen/unseen split, as everything is technically
unseen. We use VAW’s unseen split from [4] to directly
compare with OvarNet. COMCA shows more consistent
results (58.4 mAP on seen, 56.9 on unseen) than OvarNet
(69.8 mAP on seen, 56.4 on unseen). As potential biases
may come from the cache, we check the performance on the
object-attribute compositions there stored, considering as
“seen” those present in the cache. COMCA scores 56.5 mAP
(seen) and 58.2 (unseen) on VAW, and 44.8 mAP (seen)
and 27.9 (unseen) on OVAD. Note that the difference in
performance between the two sets in OVAD follows the
zero-shot performance of the base model (e.g., 37.8 and 18.8
mAP) rather than cache-specific biases.

10. Additional qualitative results
In Fig. 9, we provide additional qualitative results to those
presented in Fig. 3 in Main. We compare OVAD and a
vanilla zero-shot CLIP ViT-B/32 with COMCA, based on
the same architecture, similar to Fig. 3. Firstly, we notice
that OVAD often recognizes opposite attributes, in particular
struggling with color. For instance, in Fig. 9a it detects
“green”, “white”, “red”, and “yellow” for the tennis racket
and “green”, “yellow”, and “red” for the apple. In addition,
it struggles with materials, for example by predicting “paper,
cardboard” for the mobile phone (Fig. 9a) and “leather” for
the skateboard (Fig. 9c). Similarly, we observe that also
vanilla CLIP is prone to predicting contradictory attributes,
such as “cooked, baked, warmed” and “raw, fresh” for the
cake, or “multicolored” and “single-colored” for the kite.
Moreover, CLIP seems to disregard the part of the object
an attribute is bound to: for instance, the apple is correctly
predicted as “green”, but also “hair color” is predicted as
“green”. Similarly, the desktop monitor in Fig. 9b is predicted
as “white” three times: for “color” (correct), “hair color”
(incorrect), and “clothes color” (incorrect). On the other
hand, COMCA has a finer understanding of attributes and
detects them more effectively, as demonstrated quantitatively
in all our experiments. Notably, it predicts “two-colored” for
the mobile phone in the leftmost picture in Fig. 9a: although
it is wrong according to the ground truth, we argue that
indeed it could be considered two-colored (white and pink).

Similarly, it predicts “full, whole” for the skateboard in
Fig. 9c: although that attribute is not annotated for that
specific object (thus we mark it in yellow), we argue that it
would be a correct prediction.

11. Details on prompts

We utilize five types of prompts: (i) for retrieval, to construct
queries for web-scale datasets; (ii) for image generation; (iii)
for soft labeling; (iv) for inference, to define prompts for the
attributes of interest; and (v) to obtain attribute-object scores
via LLMs.

Retrieval. For retrieval, we construct prompts us-
ing the template A photo of {noun} that is
{attribute}, following OvarNet [4]. For example, when
retrieving images for a red car, the prompt will be A
photo of car that is red.

Image generation. To generate images we employ
the following template: a {attr} {noun} on
a clear background, hyperrealistic,
highly detailed, sharp focus, 4k for
attributes of type “is”, as defined in OVAD [2], and the fol-
lowing template: a {noun} with {attr} {obj}
on a clear background, hyperrealistic,
highly detailed, sharp focus, 4k for
attributes of type “has”.

Soft labeling. To compute soft labels, COMCA first com-
putes the similarity between the target attributes and the
images in the cache. Following [13], we encapsulate at-
tributes into templates to improve performance and reduce
noise. We leverage the same templates of OVAD [2]. For
“has” type attributes, we use the following prompts:
• a {attr} {obj} {noun}
• a {noun} has {attr} {obj}
For “is” type attributes, we use the following prompts:
• a {attr} {noun}
• a {noun} is {attr}
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two-colored

single, one, individual, sole

color: white
pattern: lettered

material: paper, cardboard

smooth, sleek
clean, neat
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OVAD

COMCA

CLIP

horizontal
single, one, individual, sole

smooth, sleek
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color: green
color: white

color: red
color: yellow
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full, whole
single-colored

single, one
raw, fresh

color: green
color: yellow

color: red
state: open

color: green
hair color: green

raw, fresh
face expression: disgust, frowning

(a) Comparison of performance on a mobile phone, a tennis racket, and an apple.

vertical, upright, standing
two-colored

single, one, individual, sole

color: white
color: red

material: glass
state: closed

cooked, baked, warmed
raw, fresh

smooth, sleek

OVAD

COMCA

CLIP

full, whole
vertical, upright, standing

single, one, individual, sole
two-colored

color: white
clothes color: white

state: wet
state: dry

opaque
single-colored
young, baby
color: white

state: on
single, one, individual, sole
vertical, upright, standing

single-colored

state: closed
state: open
color: white
color: gray

opaque
hair color: white

clothes color: white
color: white

(b) Comparison of performance on a cake, a frisbee flying disc, and a PC monitor.

state: on
single, one, individual, sole

state: open
sitting, sit
state: on

sitting, sit
dotted, speckled, spotted

OVAD

COMCA

CLIP

horizontal
clean, neat

smooth, sleek

multicolored, colorful
color quantity: two-colored

big, large, giant, huge

multicolored, colorful
single-colored

textile, cloth, fabric, denim

full, whole
single, one

group, bunch, collection
male, man, guy, boy

material: leather

dotted, speckled, spotted
adult, old, aged

(c) Comparison of performance on a laptop, a kite, and a skateboard.

Figure 9. Additional qualitative results. Top positive predictions of OVAD, CLIP and COMCA on sample images from OVAD. Green are
correct predictions, red are wrong ones.



As VAW [12] does not provide is/has type annotation, we
use “is” type templates. Similarly to OVAD [2], we utilize
the word “object” as the general noun to bind attributes to
while computing these soft cache scores.

Inference. Following OvarNet [4], we construct prompts
for inference by using the following template: A photo
of something that is {attribute} . For example, for the at-
tribute “clean” the query produced at inference time will be
A photo of something that is clean.

Object-attribute scoring via LLM. When utilising
LLMs to generate object-attribute compatibility scores we
carefully instruct the model to ensure it provides sensible
results. Specifically, we utilize the following template:

Let’s play a role game. You will play the role of a
researcher who is both a statistician and linguist. I
will interpret a silly student who has many questions
regarding language and statistics of language.

In particular, I will ask you to tell me which
classes, or categories if you prefer, match or
bind well with the attribute I will provide you.
More precisely, you will have to tell me if each
class/category that I will give you matches well the
given attribute. You should also tell me how well
they match on a scale 0 (the class cannot have the
attribute) to 10 (the class can have the attribute and
it is semantically fine to associate the attribute to the
class).

Your response should list all the {count categories}
classes, and provide for each one of them the score
on the scale explained above. The output format
should be ‘class: score’. No explanation at all, just
plain output.

Additional rules:
• do not provide any outputs but the list of chosen

categories
• the output must be in the form of “x. category:

score”, where ‘x’ is the index of the category
• the output must be in the form of a list
• make sure you provide a score for each category.

There are {count categories} categories, so the
output list must have {count categories} elements.

There are {count categories} classes (categories).
The list of classes, or categories, is the following:
{categories}

The attribute is: {attribute}.

Note that this template has different parameters:

{count categories} How many categories the
prompt will contain.

{categories} The list of categories to evaluate. More
precisely, they are passed as a numbered list, with one
category per line.

{attribute} The attribute to which categories have to
be bound for evaluation.

We empirically find that the LLM may struggle when han-
dling hundreds or thousands of categories, as in the case of
VAW [12]. Therefore, we find it useful to split the categories
in multiple sets, construct independent prompts, and ask the
model to respond to batches of categories separately, thus
ensuring its context window is not filled.

12. Resources used
Our training-free method does not require extensive com-
putational resources and is designed to be computationally
efficient. We run all our experiments on a NVIDIA RTX
2080Ti GPU with 12GB of VRAM. We use up to 4 NVIDIA
RTX A6000 GPUs with 48GB of VRAM for the experi-
ments that involve image generation, and are therefore more
resource-demanding. Specifically, we use this configuration
to generate images for the ablation in Tab. 15, which uses
Stable Diffusion XL to generate images. Evaluation time
on the NVIDIA RTX 2080Ti GPU takes approximately 4
minutes on OVAD and 10 minutes on VAW.

13. Limitations
We presented the first approach for open-vocabulary training-
free attribute detection. While effective, our method can be
improved in several directions. First, COMCA relies on an
external database to generate the cache, so if this database
does not contain a category, we cannot sample/bind it to
an attribute. In some applications, using a general-purpose
web-scale dataset might not suffice. Second, COMCA relies
on a large language model (LLM). If the LLM generates
inaccurate or incorrect information, known as hallucina-
tions, it could adversely affect the overall performance of
the method. Finally, our experimental evaluation demon-
strates that COMCA is competitive with training-based ap-
proaches and more effective when we aim to generalize to
other datasets and domains (see Fig. 4 in Main). However,
training-based approaches may still be preferable if resources
in terms of large scale datasets and computing infrastructure
are available.
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