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7. Complementary results

In this section, we provide additional metrics to the Char-
acter Error Rate (CER) presented in the main paper. We
provide the following information regarding the results: the
main table of the paper (Table 3) is presented in terms of
Word Error Rate (WER) in Table 4 and the dataset source
for the best test result obtained for each architecture is re-
ported in Table 5. Additionally, Tables 6 and 7 present all
cross-domain results (both real and synthetic, respectively)
for each architecture individually. In Table 6, the in-domain
(ID) results are displayed on the main diagonals and high-
lighted in gray.

We observe in Table 4 that the ID results remain gen-
erally consistent, comparable to those reported in the lit-
erature. However, the performance in the OOD scenario
remains significantly poor. Additionally, the numerical val-
ues highlight that the WER, being a stricter metric than the
CER, amplifies the performance gap in the OOD scenario.
While the average ID to OOD gap was 37.6% in terms of
CER, it increases to 60.3% when measured using WER. Ta-
ble 5 presents the best-performing source domain for each
target domain in the OOD scenario. The dominance of the
IAM dataset is noticeable, accounting for nearly 60% of
cases, followed by Bentham with slightly over 20%. How-
ever, as reported in Section 4.3, the choice of source domain
has minimal impact on OOD performance, as all results re-
main poor even when the target domain is known (oracle
scenario). Additionally,

Lastly, we compare three state-of-the-art VLMs [22, 48,
59] including TrOCR [46] against the best-reported OOD
results in the paper (HTRpop column) in Table 8. As ob-
served, the zero-shot performance of these models is very
low, as they are not originally designed for HTR tasks, with
TrOCR being on par with the HTR models on the English
datasets. Moreover, there is no established pipeline for ef-
fectively applying VLMs to such specific HTR datasets,
highlighting the need for further investigation.

8. Hyperparameters

8.1. Architectures implementation

As stated in the main paper, we aimed to follow the imple-
mentation closest to the original papers using the available
information for those that did not provide code. In all cases,
the most significant architectural change occurred in the fi-
nal prediction layer, where the output vocabulary size was
adjusted to match the vocabulary size (94) reported in Sec-
tion 3 of the main text.

8.2. Data augmentation

We detail the parameters used for data augmentation dur-
ing training. No transformations are applied during val-
idation or testing, except for padding, which is applied
equally across the validation, training, and test splits.
All transformations are applied independently with a 50%
probability. For the transformations, we utilized those
available in version 2 of transformations in torchvision
(torchvision.transforms.v2). To simplify visu-
alization and shorten the names, we directly referenced the
v2 submodule. For operations involving OpenCV, we em-
ployed the opencv-python library (cv2 module) to execute
OpenCV transformations directly.

* Dilation (Custom transformation):
— Parameters: kernel size = 3; iterations = 1.
e Erosion (Custom transformation):
— Parameters: kernel size = 2; iterations = 1.
¢ Elastic Transform (v2.ElasticTransform):
— Parameters: sigma = 5.0; alpha = 5.0; fill =255 (white).
* Random Affine (Rotation, Translation, Shear)

(v2.RandomAffine):

— Parameters: rotation degrees = +1; translation = 1%
horizontally and up to 5% vertically; shear = 1 pixels
(sheared by a factor of 5); fill = 255 (white).

* Perspective (v2 .RandomPerspective):

— Parameters: Distortion scale = 0.1; fixed probability of
applying the distortion = 100%; fill = 255 (white).

¢ Gaussian Blur (Noise) (v2 .GaussianBlur):

— Parameters: kernel size = 3; sigma = 2.0.

e Padding (v2.Pad):
— Parameters: padding = 15 pixels on the left and right;
fill =255 (white).
* Grayscale (v2.Grayscale):
— Parameters: num_output_channels = 1
* Convert to Tensor (v2.ToTensor):
— Converts the input data to a PyTorch tensor format.

Dilation details. The image is first inverted using
cv2.bitwise not. Then, cv2.dilate is applied
with the selected kernel, expanding the white areas in the
image. The process is repeated for the specified number of
iterations. Finally, the image is inverted again to restore its
original colors.

Erosion details. The image is inverted using
cv2.bitwise_not, followed by cv2.erode with
the selected kernel, shrinking the white areas. This oper-
ation is also repeated for the given number of iterations.



Table 4. In-distribution (ID) and out-of-distribution (OOD) results (WER %) for HTR models across datasets. The OOD result is reported
from the best-performing source. Results marked with * indicate outliers, meaning that the model did not converge in the ID setting.
Average results (bottom row) are computed filtering out outliers. T denotes architectures implemented from the papers (no code provided).

Dataset CRNN [64] VAN [20] C-SANT [26] HTR-VT [47] Kang' [39] Michael [54] LTT[10] VLTt [11]
atase
ID OOD ID OOD ID OOD ID OOD ID OOD ID OOD ID OOD ID O0OOD
IAM 224 682 242 768 50.7 83.6 182 837 232 87.1 202 829 234 720 27.0 703
Rimes 11.5 742 182 669 451 80.7 245 787 148 783 200 845 132 774 133 76.1
G.W. 26.0 68.8 312 747 338 939 717 833 104.3* 77.6 80.1* 76.1 1954* 65.7 51.4* 65.8
Bentham 132 549 20.5 62.1 30.2 822 24.6 70.8 198 682 19.8 69.6 143 60.6 155 60.5
S.G. 31.1 96.8 33.1 953 41.0 964 59.5 974 203.3* 987 1347 98.8 450 979 376 973
Rodrigo 83 921 124 929 223 972 163 922 11.1 968 154 96.2 9.6 94.0 10.7 943
ICFHRy016 22.1 104.5 339 1004 64.2 100.7 433 103.1 31.7 1068 339 104.8 242 110.3 24.6 109.7
Average 19.2 799 248 813 372 907 254 870 20.1 876 223 876 21.6 826 257 82.0
Table 5. Best source domain for each target (rows) across all architectures studied in the paper.

Dataset CRNN [64] VAN [20] C-SANT [26] HTR-VT [47] Kang' [39] Michael® [54] LT'[10] VLT [11]

IAM Bentham Rimes Rimes Rimes Rimes Bentham Bentham  Bentham

G.W. IAM Bentham IAM Bentham IAM IAM 1AM 1AM

Bentham IAM IAM IAM IAM IAM IAM 1AM IAM

Rimes IAM IAM IAM IAM IAM IAM 1AM IAM

S.G. Rodrigo IAM Rodrigo Rodrigo IAM 1AM Rodrigo Rodrigo

Rodrigo IAM IAM Bentham IAM IAM IAM 1AM IAM

ICFHR 2016  Bentham Bentham Bentham Bentham Rimes IAM Rimes Bentham

Afterward, the image is inverted back to its original color
scheme.

9. Visual and textual divergences

In this section, we present the specific numerical metrics for
visual and textual divergence across the various domains
used in the factor analysis. Prior to presenting these re-
sults, we first describe the training procedure for the Con-
volutional Autoencoder (AE) (¢g,) employed to measure
reconstruction error (visual divergence).

9.1. Convolutional Autoencoder

9.1.1. Architecture

Regarding the Autoencoder (AE) used, we employed a
rather simple convolutional architecture. The encoder pro-
gressively downsamples and compresses the input image
into a 512-dimensional latent vector using four 3 x 3 convo-
lutional layers, each followed by leaky ReLU activation and

2 x 2 max-pooling. The feature channels increase sequen-
tially from 1 to 16, 32, 64, and 128, with a fully connected
layer producing the final latent representation. The decoder
reconstructs the image from the latent vector by reversing
the encoder’s process. It uses a fully connected layer to re-
shape the latent vector into a tensor, followed by four trans-
posed convolutional layers that upsample the feature map
to the original image size. Feature channels decrease from
128 to 64, 32, 16, and finally 1, with leaky ReL.U activations
applied after each layer, except the final layer, which uses a
sigmoid activation to normalize output pixel values.

Despite the simplicity of the architecture, the input im-
ages are rescaled to dimensions of 64 pixels in height and
1024 pixels in width, result in a model with approximately
33 million parameters. Note that due to the large image
size, the pre-flattened vector resulting from the encoder’s
downsampling has 32,768 dimensions (flattening the final
feature map of the encoder with 128 channels, a height of
4, and a width of 64). Using an MLP to reduce this vec-



Table 6. Complete CER results in all datasets using real data. Table 7. Complete CER results in all datasets using synthetic data.

Method ST IAM  Rimes G.W. Bentham S.G. Rodrigo ICFHR3016 Method S/T  IAM Rimes G.W. Bentham S.G. Rodrigo ICFHR2(16
1AM 64 250 3L1 253 455 409 862 WIT-en 119 223 169 269 258 281 785
Rimes 354 37 490 502 523 471 879 WITfr 195 170 263 317 263 272 781
CRNN[64] G w ss6 615 EB s02 3 662 1000 CRNN[64] WIT-es 200 227 274 329 272 222 794
WITda 207 246 274 345 214 274 790
Bentham 349 453 322 47 578 438 787
WIT-de 204 253 27.3 320 288 283 776
S.G. 777 745 893 780 72 528 1000
Rodrigo 657 614 718 663 336 17 853 WITen 169 243 258 261 263 284 750

WIT-fr 224 194 317 331 253 258 769
VAN [20] WIT-es 23.1 235 326 348 260 232 775
WIT-la 227 245 341 348 235 282 777

ICFHRog16 749 784 816 754 719 756 52

1AM 66 213 345 266 398 385 829
) WITde 219 260 308 338 282 206 743
Rimes 286 56 461 450 472 437 884
VANDOL oW 737 674 93 593 671 696 100.0 WiTen 320 380 478 427 357 388 835
Bentham w2 a7 n0 EE o4 386 753 WITfr 357 359 474 465 364 404 815
CSAND6] WITes 362 380 464 474 350 373 827
SG. 9.1 850 931 8.1 78 577 100.0
WITla 366 388 49.6 480 358 407 834
Rodrigo 765 707 782 681 4Ll 23 8§73 WITde 348 386 489 460 366 405 SL1
ICFHRo016 708 748 764 678 721 714 15
WITen 207 315 263 283 294 322 775
1AM 286 298 498 389 502 466 90.9 WITfr 275 266 342 381 293 321 78.1
VT [47] WITees
Rimes s BBl 07 a0 s 457 870 HTR-VT [47) WITes 282 303 352 386 30. 266 773
CSAN [26] WITda 289 331 354 396 278 306 782
G:W. 607 602 [BZO) 632 634 668 969 WITde 292 341 366 392 330 342 767
Bentham 547 513 583 266 648 452 8§34
sa. 153 15 sz 755 E s0s ooz WITen 287 445 451 513 400 461 853
) WITfr 386 3301 477 574 362 419 878
Rodrigo 27 61 71 62 350 [EEgY 865 Kang[39]  WITes 377 49.1 703 664 428 487 100.0
ICFHRz016 784 818 866 787 8.1 812 753 WITla 262 296 39.6 412 227 353 953
WITde 323 401 420 439 324 430 842
1AM 58 283 400 333 442 385 861
Rimes 37 BBl 162 42 510 461 819 WITen 206 340 305 366 352 434 836
NT[47 WITfr 329 252 428 524 368 411 835
HIR-VT 471 G ., 701 733 349 763 7192 769 859 ] ) i
Michael [54] WIT-es 338 339 450 540 366 334 852
Bentham 44 498 386 [RGY 581 454 796 WITla 377 395 473 585 307 456 829
SG. 787 782 898 781 171 601 100.0 WITde 39.1 441 484 617 403 497 7958
Rodrigo 664 641 687 678 365 39 854
WITen 138 251 163 214 234 280 806
ICFHR2016 749 771 788 733 762 719 116 WITfr 225 189 262 355 241 277 798
LT[10] WITes 233 250 27.1 380 225 248 814
1AM B 320 440 394 518 606 962 WITla 240 264 279 393 225 285 830
Rimes 021 57 655 635 6.1 652 926 WITde 231 276 249 363 260 282 788
Kang [39) G w, 828 818 784 777 783 774 100.0
WITen 153 267 190 250 235 291 806
Bentham 534 597 466 85 808 711 955 WILh 230 105 250 373 233 219 195
S.G. 1000 100.0 100.0 1000 787 865 100.0 VLT [11] WIT-es 249 27.0 284 406 251 242 798
Rodrigo 817 786 859 786 6L1 26 959 WITda 260 283 299 420 266 310 821
ICFHRg1g 747 765 753 741 759 749 18 WIT-de 236 259 270 392 244 282 792
1AM 75 355 436 435 553 653 852
Rimes 545 69 639 702 643 668 863
Michael [34] G . 789 805 538 734 795 767 1000
Bentham 491 600 507 85 745 707 912 Table 8. Zero-shot performance (CER) of VLMs on HTR datasets
S.G. 10001000 1000 1000 769 795 1000 vs. the best-reported OOD results in the paper (HTRoop column).
Rodrigo 1000 1000 872 1000 929 38 924

ICFHR01¢ 893 897 816 804 779 779 95

Dataset LLaVA1.6 Kosmos-2 TrOCRy InstructBlip HTRoop

1AM 79 308 323 338  Sl4 484 981
Rimes ©9 50 525 619 608 564 905 IAM 74.9 80.3 6.8 78.9 28.6
LT 0] G.W. 835 858 796 879 750 733 100.0 .
Bentham ©0 554 396 60 654 517 924 Rimes 93.5 81.5 27.2 80.4 213
SG. 866 821 956 849 125 659 967 G.W. 78.6 79.7 17.3 83.3 31.1
Rodrigo 731 676 809 708 378 20 907 S.G. 80.4 82.5 441 87.5 253
ICFHRp01g 780 813 813 779 774 765 59
Bentham 85.4 78.4 17.9 76.7 33.6
1AM 89 204 3.1 333 482 474 897 .
Rimes 49 51 564 632 624 590 964 Rodrigo 76.4 81.2 38.1 86.2 38.5
VETUT - Gw, 695 722 252 696 763 759 1000 ICFHR2016 95.3 87.2 92.6 88.7 75.3
Bentham 413 537 437 61 658 535 851
SG. 918 833 984 869 92 589 1000
Rodrigo 77 672 802 720 387 22 907

ICFHRg016 783 803 808 81.7 79.5 81.8 6.0

tor to 512 dimensions significantly increases the parameter
count. These two layers (one in the encoder and one in the
decoder) account for 99% of the model’s parameters.



9.1.2. Training details

We train the AE to minimize the Mean Squared Error
(MSE) between the input and reconstructed images. We
employ the Adam optimizer with a learning rate of 0.001
for a maximum of 100 epochs. To avoid overfitting, we
save the best-performing model according to the validation
loss of the same source domain at the end of each epoch.

9.2. Visual divergence

This section presents the results of visual domain diver-
gence, measured by the reconstruction error obtained from
the autoencoder described in previous sections. Fig. 8 il-
lustrates the divergence (calculated as the average MSE per
image) between each domain pair, with the source repre-
sented on the Y-axis and target on the X-axis. Divergences
are computed between training and test splits for each pair.
To facilitate interpretability, the values are normalized, such
that a value of 100 reflects high divergence (darker colors),
while a value of O denotes indicating low divergence (lighter
colors). To validate the visual divergence results in the
OOD scenario, Fig. 11 presents images from three pairs of
domains with low visual divergence (left) and three domains
with high one (right) with their respective scores. Note
that the left column features writing styles with very sim-
ilar stroke densities, while the right column displays styles
that differ significantly in both stroke appearance and den-
sity. The domain pairs were selected based on the scores
presented in Fig. 8, ensuring minimal repetition of domains
to better highlight the differences.

100
IAM
Rimes 80
G.W.
60
S.G.
40
Bentham
Rodrigo -20
ICFHR2016
-0

Figure 8. Heatmap of visual divergence between source (rows)
and target (columns) from real HTR domains. Divergence values
are normalized, with higher scores indicating greater divergence
and lower scores reflecting lower divergence.
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IAM (en)
Rimes (fr) 80
G.W. (en)
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S.G. (la)
40
Bentham (en)
Rodrigo (es) -20

ICFHR2016 (de)

Figure 9. Heatmap of textual divergence from real HTR domains.
Rows correspond to source domains, while columns represent tar-
get domains. The values are normalized, with 100 indicating max-
imum divergence and O representing minimum divergence.
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Rimes (fr)
G.W. (en)
S.G. (la)
40
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Rodrigo (es)

-20

ICFHR 016 (de)

Figure 10. Heatmap of textual divergence between real and syn-
thetic domains. The values are normalized, where 100 repre-
sents maximum divergence and O represents minimum divergence.
Note that each source domain corresponds to a target domain that
matches its language, except for English, where three target do-
mains are used: IAM, George Washington, and Bentham.

9.3. Textual divergence

We present the results of textual domain divergences, quan-
tified as the averaged KL-divergence across n-grams as de-
scribed in the main text. Fig. 9 shows the divergence be-
tween textual distributions across domains, with the source
represented on the Y-axis and the target the X-axis. Di-
vergences are computed between training and test splits
for each pair. Fig. 10 presents the textual divergences be-
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Figure 11. Representation of visual divergence between domains. Examples are presented in two columns: on the left, three domain pairs
with low visual divergence, and on the right, three pairs with high visual divergence. For each domain pair, the source domain is shown
at the top and the target domain at the bottom. Left (top to bottom): First pair (IAM-Bentham), second pair (ICFHR2016-Bentham), third
pair IAM-Rimes). Right (top to bottom): First pair (Rimes-Rodrigo), second pair (Rimes-S.G.), third pair (G.W.-S.G.). The divergence
percentage (see Fig. 8) is displayed for each pair.

tween real source domains (Y-axis) and synthetic domains
(X-axis) for each language. In this case, the divergence is
calculated between the training split of the source domain
and the training split of the synthetic data, as these are used
to compute the n-grams and train the models in the synthetic
experiments. Both figures display normalized values, where
a value of 100 indicates maximum divergence (darker col-
ors) and 0 minimum divergence between texts.

10. Factor analysis

The selection of the number of factors is a crucial criterion
for analyzing the outcomes of the factor analysis. Note that
the first k factors span the subspace defined by the first &
eigenvectors of the data matrix. To determine the number
of factors (n), the simplest rule of thumb involves retaining
all eigenvectors with eigenvalues > 1. This can be simply
visualized by plotting the eigenvalues in descending order
using a scree plot, as shown in Fig. 12. Based on this anal-
ysis, we decided to retain four factors as stated in the main
text of the paper.
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Figure 12. Scree plot: Eigenvalues of the standardized values used
for factor analysis, ordered in descending magnitude. We chose to
retain 4 factors, as these are the ones with eigenvalues > 1.



