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7. Complementary results
In this section, we provide additional metrics to the Char-
acter Error Rate (CER) presented in the main paper. We
provide the following information regarding the results: the
main table of the paper (Table 3) is presented in terms of
Word Error Rate (WER) in Table 4 and the dataset source
for the best test result obtained for each architecture is re-
ported in Table 5. Additionally, Tables 6 and 7 present all
cross-domain results (both real and synthetic, respectively)
for each architecture individually. In Table 6, the in-domain
(ID) results are displayed on the main diagonals and high-
lighted in gray.

We observe in Table 4 that the ID results remain gen-
erally consistent, comparable to those reported in the lit-
erature. However, the performance in the OOD scenario
remains significantly poor. Additionally, the numerical val-
ues highlight that the WER, being a stricter metric than the
CER, amplifies the performance gap in the OOD scenario.
While the average ID to OOD gap was 37.6% in terms of
CER, it increases to 60.3% when measured using WER. Ta-
ble 5 presents the best-performing source domain for each
target domain in the OOD scenario. The dominance of the
IAM dataset is noticeable, accounting for nearly 60% of
cases, followed by Bentham with slightly over 20%. How-
ever, as reported in Section 4.3, the choice of source domain
has minimal impact on OOD performance, as all results re-
main poor even when the target domain is known (oracle
scenario). Additionally,

Lastly, we compare three state-of-the-art VLMs [22, 48,
59] including TrOCR [46] against the best-reported OOD
results in the paper (HTROOD column) in Table 8. As ob-
served, the zero-shot performance of these models is very
low, as they are not originally designed for HTR tasks, with
TrOCR being on par with the HTR models on the English
datasets. Moreover, there is no established pipeline for ef-
fectively applying VLMs to such specific HTR datasets,
highlighting the need for further investigation.

8. Hyperparameters
8.1. Architectures implementation
As stated in the main paper, we aimed to follow the imple-
mentation closest to the original papers using the available
information for those that did not provide code. In all cases,
the most significant architectural change occurred in the fi-
nal prediction layer, where the output vocabulary size was
adjusted to match the vocabulary size (94) reported in Sec-
tion 3 of the main text.

8.2. Data augmentation
We detail the parameters used for data augmentation dur-
ing training. No transformations are applied during val-
idation or testing, except for padding, which is applied
equally across the validation, training, and test splits.
All transformations are applied independently with a 50%
probability. For the transformations, we utilized those
available in version 2 of transformations in torchvision
(torchvision.transforms.v2). To simplify visu-
alization and shorten the names, we directly referenced the
v2 submodule. For operations involving OpenCV, we em-
ployed the opencv-python library (cv2 module) to execute
OpenCV transformations directly.
• Dilation (Custom transformation):

– Parameters: kernel size = 3; iterations = 1.
• Erosion (Custom transformation):

– Parameters: kernel size = 2; iterations = 1.
• Elastic Transform (v2.ElasticTransform):

– Parameters: sigma = 5.0; alpha = 5.0; fill = 255 (white).
• Random Affine (Rotation, Translation, Shear)

(v2.RandomAffine):
– Parameters: rotation degrees = ±1; translation = 1%

horizontally and up to 5% vertically; shear = ±1 pixels
(sheared by a factor of 5); fill = 255 (white).

• Perspective (v2.RandomPerspective):
– Parameters: Distortion scale = 0.1; fixed probability of

applying the distortion = 100%; fill = 255 (white).
• Gaussian Blur (Noise) (v2.GaussianBlur):

– Parameters: kernel size = 3; sigma = 2.0.
• Padding (v2.Pad):

– Parameters: padding = 15 pixels on the left and right;
fill = 255 (white).

• Grayscale (v2.Grayscale):
– Parameters: num output channels = 1

• Convert to Tensor (v2.ToTensor):
– Converts the input data to a PyTorch tensor format.

Dilation details. The image is first inverted using
cv2.bitwise not. Then, cv2.dilate is applied
with the selected kernel, expanding the white areas in the
image. The process is repeated for the specified number of
iterations. Finally, the image is inverted again to restore its
original colors.

Erosion details. The image is inverted using
cv2.bitwise not, followed by cv2.erode with
the selected kernel, shrinking the white areas. This oper-
ation is also repeated for the given number of iterations.



Table 4. In-distribution (ID) and out-of-distribution (OOD) results (WER %) for HTR models across datasets. The OOD result is reported
from the best-performing source. Results marked with ⇤ indicate outliers, meaning that the model did not converge in the ID setting.
Average results (bottom row) are computed filtering out outliers. † denotes architectures implemented from the papers (no code provided).

Dataset
CRNN [64] VAN [20] C-SAN† [26] HTR-VT [47] Kang† [39] Michael† [54] LT† [10] VLT† [11]

ID OOD ID OOD ID OOD ID OOD ID OOD ID OOD ID OOD ID OOD

IAM 22.4 68.2 24.2 76.8 50.7 83.6 18.2 83.7 23.2 87.1 20.2 82.9 23.4 72.0 27.0 70.3

Rimes 11.5 74.2 18.2 66.9 45.1 80.7 24.5 78.7 14.8 78.3 20.0 84.5 13.2 77.4 13.3 76.1

G.W. 26.0 68.8 31.2 74.7 33.8 93.9 71.7⇤ 83.3 104.3⇤ 77.6 80.1⇤ 76.1 195.4⇤ 65.7 51.4⇤ 65.8

Bentham 13.2 54.9 20.5 62.1 30.2 82.2 24.6 70.8 19.8 68.2 19.8 69.6 14.3 60.6 15.5 60.5

S.G. 31.1 96.8 33.1 95.3 41.0 96.4 59.5 97.4 203.3⇤ 98.7 134.7⇤ 98.8 45.0 97.9 37.6 97.3

Rodrigo 8.3 92.1 12.4 92.9 22.3 97.2 16.3 92.2 11.1 96.8 15.4 96.2 9.6 94.0 10.7 94.3

ICFHR2016 22.1 104.5 33.9 100.4 64.2 100.7 43.3 103.1 31.7 106.8 33.9 104.8 24.2 110.3 24.6 109.7

Average 19.2 79.9 24.8 81.3 37.2 90.7 25.4 87.0 20.1 87.6 22.3 87.6 21.6 82.6 25.7 82.0

Table 5. Best source domain for each target (rows) across all architectures studied in the paper.

Dataset CRNN [64] VAN [20] C-SAN† [26] HTR-VT [47] Kang† [39] Michael† [54] LT† [10] VLT† [11]

IAM Bentham Rimes Rimes Rimes Rimes Bentham Bentham Bentham

G.W. IAM Bentham IAM Bentham IAM IAM IAM IAM

Bentham IAM IAM IAM IAM IAM IAM IAM IAM

Rimes IAM IAM IAM IAM IAM IAM IAM IAM

S.G. Rodrigo IAM Rodrigo Rodrigo IAM IAM Rodrigo Rodrigo

Rodrigo IAM IAM Bentham IAM IAM IAM IAM IAM

ICFHR 2016 Bentham Bentham Bentham Bentham Rimes IAM Rimes Bentham

Afterward, the image is inverted back to its original color
scheme.

9. Visual and textual divergences
In this section, we present the specific numerical metrics for
visual and textual divergence across the various domains
used in the factor analysis. Prior to presenting these re-
sults, we first describe the training procedure for the Con-
volutional Autoencoder (AE) (�✓S ) employed to measure
reconstruction error (visual divergence).

9.1. Convolutional Autoencoder
9.1.1. Architecture
Regarding the Autoencoder (AE) used, we employed a
rather simple convolutional architecture. The encoder pro-
gressively downsamples and compresses the input image
into a 512-dimensional latent vector using four 3⇥3 convo-
lutional layers, each followed by leaky ReLU activation and

2 ⇥ 2 max-pooling. The feature channels increase sequen-
tially from 1 to 16, 32, 64, and 128, with a fully connected
layer producing the final latent representation. The decoder
reconstructs the image from the latent vector by reversing
the encoder’s process. It uses a fully connected layer to re-
shape the latent vector into a tensor, followed by four trans-
posed convolutional layers that upsample the feature map
to the original image size. Feature channels decrease from
128 to 64, 32, 16, and finally 1, with leaky ReLU activations
applied after each layer, except the final layer, which uses a
sigmoid activation to normalize output pixel values.

Despite the simplicity of the architecture, the input im-
ages are rescaled to dimensions of 64 pixels in height and
1024 pixels in width, result in a model with approximately
33 million parameters. Note that due to the large image
size, the pre-flattened vector resulting from the encoder’s
downsampling has 32,768 dimensions (flattening the final
feature map of the encoder with 128 channels, a height of
4, and a width of 64). Using an MLP to reduce this vec-



Table 6. Complete CER results in all datasets using real data.

Method S/T IAM Rimes G.W. Bentham S.G. Rodrigo ICFHR2016

CRNN [64]

IAM 6.4 25.0 31.1 25.3 45.5 40.9 86.2

Rimes 35.4 3.7 49.0 50.2 52.3 47.1 87.9

G.W. 55.6 61.5 8.2 59.2 69.3 66.2 100.0

Bentham 34.9 45.3 32.2 4.7 57.8 43.8 78.7

S.G. 77.7 74.5 89.3 78.0 7.2 52.8 100.0

Rodrigo 65.7 61.4 71.8 66.3 33.6 1.7 85.3

ICFHR2016 74.9 78.4 81.6 75.4 77.9 75.6 5.2

VAN [20]

IAM 6.6 21.3 34.5 26.6 39.8 38.5 82.9

Rimes 28.6 5.6 46.1 45.0 47.2 43.7 88.4

G.W. 73.7 67.4 9.3 59.3 67.1 69.6 100.0

Bentham 37.2 41.7 32.0 7.4 49.4 38.6 75.3

S.G. 96.1 85.0 93.1 83.1 7.8 57.7 100.0

Rodrigo 76.5 70.7 78.2 68.1 41.1 2.3 87.3

ICFHR2016 70.8 74.8 76.4 67.8 72.1 71.4 7.5

C-SAN [26]

IAM 28.6 29.8 49.8 38.9 50.2 46.6 90.9

Rimes 31.5 21.3 50.7 45.9 51.1 45.7 87.0

G.W. 60.7 60.2 32.0 63.2 68.4 66.8 96.9

Bentham 54.7 51.3 58.3 26.6 64.8 45.2 83.4

S.G. 75.3 72.5 81.8 75.5 39.8 50.8 90.2

Rodrigo 72.7 69.1 78.1 68.2 35.0 38.5 86.9

ICFHR2016 78.4 81.8 86.6 78.7 86.1 81.2 75.3

HTR-VT [47]

IAM 5.8 28.3 40.0 33.3 44.2 38.5 86.1

Rimes 33.7 7.9 46.2 48.2 51.0 46.1 81.9

G.W. 70.1 73.3 34.9 76.3 79.2 76.9 85.9

Bentham 44.4 49.8 38.6 8.4 58.1 45.4 79.6

S.G. 78.7 78.2 89.8 78.1 17.1 60.1 100.0

Rodrigo 66.4 64.1 68.7 67.8 36.5 3.9 85.4

ICFHR2016 74.9 77.1 78.8 73.3 76.2 71.9 11.6

Kang [39]

IAM 8.0 32.0 44.0 39.4 51.8 60.6 96.2

Rimes 42.1 5.7 65.5 63.5 62.1 65.2 92.6

G.W. 82.8 81.8 78.4 77.7 78.3 77.4 100.0

Bentham 53.4 59.7 46.6 8.5 80.8 71.1 95.5

S.G. 100.0 100.0 100.0 100.0 78.7 86.5 100.0

Rodrigo 81.7 78.6 85.9 78.6 61.1 2.6 95.9

ICFHR2016 74.7 76.5 75.3 74.1 75.9 74.9 7.8

Michael [54]

IAM 7.5 35.5 43.6 43.5 55.3 65.3 85.2

Rimes 54.5 6.9 63.9 70.2 64.3 66.8 86.3

G.W. 78.9 80.5 53.8 73.4 79.5 76.7 100.0

Bentham 49.1 60.0 50.7 8.5 74.5 70.7 91.2

S.G. 100.0 100.0 100.0 100.0 76.9 79.5 100.0

Rodrigo 100.0 100.0 87.2 100.0 92.9 3.8 92.4

ICFHR2016 89.3 89.7 81.6 80.4 77.9 77.9 9.5

LT [10]

IAM 7.9 30.8 32.3 33.8 51.4 48.4 98.1

Rimes 42.9 5.0 52.5 61.9 60.8 56.4 90.5

G.W. 83.5 85.8 79.6 87.9 75.0 73.3 100.0

Bentham 42.0 55.4 39.6 6.0 65.4 51.7 92.4

S.G. 86.6 82.1 95.6 84.9 12.5 65.9 96.7

Rodrigo 73.1 67.6 80.9 70.8 37.8 2.0 90.7

ICFHR2016 78.0 81.3 81.3 77.9 77.4 76.5 5.9

VLT [11]

IAM 8.9 29.4 32.1 33.3 48.2 47.4 89.7

Rimes 44.9 5.1 56.4 63.2 62.4 59.1 96.4

G.W. 69.5 72.2 25.2 69.6 76.3 75.9 100.0

Bentham 41.3 53.7 43.7 6.1 65.8 53.5 85.1

S.G. 91.8 83.3 98.4 86.9 9.2 58.9 100.0

Rodrigo 71.7 67.2 80.2 72.0 38.7 2.2 90.7

ICFHR2016 78.3 80.3 80.8 81.7 79.5 81.8 6.0

Table 7. Complete CER results in all datasets using synthetic data.

Method S/T IAM Rimes G.W. Bentham S.G. Rodrigo ICFHR2016

CRNN [64]

WIT-en 11.9 22.3 16.9 26.9 25.8 28.1 78.5
WIT-fr 19.5 17.0 26.3 31.7 26.3 27.2 78.1
WIT-es 20.0 22.7 27.4 32.9 27.2 22.2 79.4
WIT-la 20.7 24.6 27.4 34.5 21.4 27.4 79.0
WIT-de 20.4 25.3 27.3 32.1 28.8 28.3 77.6

VAN [20]

WIT-en 16.9 24.3 25.8 26.1 26.3 28.4 75.0
WIT-fr 22.4 19.4 31.7 33.1 25.3 25.8 76.9
WIT-es 23.1 23.5 32.6 34.8 26.0 23.2 77.5
WIT-la 22.7 24.5 34.1 34.8 23.5 28.2 77.7
WIT-de 21.9 26.0 30.8 33.8 28.2 29.6 74.3

C-SAN [26]

WIT-en 32.0 38.0 47.8 42.7 35.7 38.8 83.5
WIT-fr 35.7 35.9 47.4 46.5 36.4 40.4 81.5
WIT-es 36.2 38.0 46.4 47.4 35.0 37.3 82.7
WIT-la 36.6 38.8 49.6 48.0 35.8 40.7 83.4
WIT-de 34.8 38.6 48.9 46.0 36.6 40.5 81.1

HTR-VT [47]

WIT-en 20.7 31.5 26.3 28.3 29.4 32.2 77.5
WIT-fr 27.5 26.6 34.2 38.1 29.3 32.1 78.1
WIT-es 28.2 30.3 35.2 38.6 30.1 26.6 77.3
WIT-la 28.9 33.1 35.4 39.6 27.8 30.6 78.2
WIT-de 29.2 34.1 36.6 39.2 33.0 34.2 76.7

Kang [39]

WIT-en 28.7 44.5 45.1 51.3 40.0 46.1 85.3
WIT-fr 38.6 33.1 47.7 57.4 36.2 41.9 87.8
WIT-es 37.7 49.1 70.3 66.4 42.8 48.7 100.0
WIT-la 26.2 29.6 39.6 41.2 22.7 35.3 95.3
WIT-de 32.3 40.1 42.0 43.9 32.4 43.0 84.2

Michael [54]

WIT-en 20.6 34.0 30.5 36.6 35.2 43.4 83.6
WIT-fr 32.9 25.2 42.8 52.4 36.8 41.1 83.5
WIT-es 33.8 33.9 45.0 54.0 36.6 33.4 85.2
WIT-la 37.7 39.5 47.3 58.5 30.7 45.6 82.9
WIT-de 39.1 44.1 48.4 61.7 40.3 49.7 79.8

LT [10]

WIT-en 13.8 25.1 16.3 21.4 23.4 28.0 80.6
WIT-fr 22.5 18.9 26.2 35.5 24.1 27.7 79.8
WIT-es 23.3 25.0 27.1 38.0 22.5 24.8 81.4
WIT-la 24.0 26.4 27.9 39.3 22.5 28.5 83.0
WIT-de 23.1 27.6 24.9 36.3 26.0 28.2 78.8

VLT [11]

WIT-en 15.3 26.7 19.0 25.0 23.5 29.1 80.6
WIT-fr 23.0 19.5 25.9 37.3 23.3 27.9 79.5
WIT-es 24.9 27.0 28.4 40.6 25.1 24.2 79.8
WIT-la 26.0 28.3 29.9 42.0 26.6 31.0 82.1
WIT-de 23.6 25.9 27.0 39.2 24.4 28.2 79.2

Table 8. Zero-shot performance (CER) of VLMs on HTR datasets
vs. the best-reported OOD results in the paper (HTROOD column).

Dataset LLaVA1.6 Kosmos-2 TrOCRM InstructBlip HTROOD

IAM 74.9 80.3 6.8 78.9 28.6
Rimes 93.5 81.5 27.2 80.4 21.3
G.W. 78.6 79.7 17.3 83.3 31.1
S.G. 80.4 82.5 44.1 87.5 25.3
Bentham 85.4 78.4 17.9 76.7 33.6
Rodrigo 76.4 81.2 38.1 86.2 38.5
ICFHR2016 95.3 87.2 92.6 88.7 75.3

tor to 512 dimensions significantly increases the parameter
count. These two layers (one in the encoder and one in the
decoder) account for 99% of the model’s parameters.



9.1.2. Training details
We train the AE to minimize the Mean Squared Error
(MSE) between the input and reconstructed images. We
employ the Adam optimizer with a learning rate of 0.001
for a maximum of 100 epochs. To avoid overfitting, we
save the best-performing model according to the validation
loss of the same source domain at the end of each epoch.

9.2. Visual divergence
This section presents the results of visual domain diver-
gence, measured by the reconstruction error obtained from
the autoencoder described in previous sections. Fig. 8 il-
lustrates the divergence (calculated as the average MSE per
image) between each domain pair, with the source repre-
sented on the Y-axis and target on the X-axis. Divergences
are computed between training and test splits for each pair.
To facilitate interpretability, the values are normalized, such
that a value of 100 reflects high divergence (darker colors),
while a value of 0 denotes indicating low divergence (lighter
colors). To validate the visual divergence results in the
OOD scenario, Fig. 11 presents images from three pairs of
domains with low visual divergence (left) and three domains
with high one (right) with their respective scores. Note
that the left column features writing styles with very sim-
ilar stroke densities, while the right column displays styles
that differ significantly in both stroke appearance and den-
sity. The domain pairs were selected based on the scores
presented in Fig. 8, ensuring minimal repetition of domains
to better highlight the differences.

Figure 8. Heatmap of visual divergence between source (rows)
and target (columns) from real HTR domains. Divergence values
are normalized, with higher scores indicating greater divergence
and lower scores reflecting lower divergence.

Figure 9. Heatmap of textual divergence from real HTR domains.
Rows correspond to source domains, while columns represent tar-
get domains. The values are normalized, with 100 indicating max-
imum divergence and 0 representing minimum divergence.

Figure 10. Heatmap of textual divergence between real and syn-
thetic domains. The values are normalized, where 100 repre-
sents maximum divergence and 0 represents minimum divergence.
Note that each source domain corresponds to a target domain that
matches its language, except for English, where three target do-
mains are used: IAM, George Washington, and Bentham.

9.3. Textual divergence

We present the results of textual domain divergences, quan-
tified as the averaged KL-divergence across n-grams as de-
scribed in the main text. Fig. 9 shows the divergence be-
tween textual distributions across domains, with the source
represented on the Y-axis and the target the X-axis. Di-
vergences are computed between training and test splits
for each pair. Fig. 10 presents the textual divergences be-
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Figure 11. Representation of visual divergence between domains. Examples are presented in two columns: on the left, three domain pairs
with low visual divergence, and on the right, three pairs with high visual divergence. For each domain pair, the source domain is shown
at the top and the target domain at the bottom. Left (top to bottom): First pair (IAM-Bentham), second pair (ICFHR2016-Bentham), third
pair (IAM-Rimes). Right (top to bottom): First pair (Rimes-Rodrigo), second pair (Rimes-S.G.), third pair (G.W.-S.G.). The divergence
percentage (see Fig. 8) is displayed for each pair.

tween real source domains (Y-axis) and synthetic domains
(X-axis) for each language. In this case, the divergence is
calculated between the training split of the source domain
and the training split of the synthetic data, as these are used
to compute the n-grams and train the models in the synthetic
experiments. Both figures display normalized values, where
a value of 100 indicates maximum divergence (darker col-
ors) and 0 minimum divergence between texts.

10. Factor analysis
The selection of the number of factors is a crucial criterion
for analyzing the outcomes of the factor analysis. Note that
the first k factors span the subspace defined by the first k
eigenvectors of the data matrix. To determine the number
of factors (n), the simplest rule of thumb involves retaining
all eigenvectors with eigenvalues � 1. This can be simply
visualized by plotting the eigenvalues in descending order
using a scree plot, as shown in Fig. 12. Based on this anal-
ysis, we decided to retain four factors as stated in the main
text of the paper.

Figure 12. Scree plot: Eigenvalues of the standardized values used
for factor analysis, ordered in descending magnitude. We chose to
retain 4 factors, as these are the ones with eigenvalues � 1.


