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1. More Details of LongVALE Benchmark
1.1. Quantitative Analysis of Event Boundaries
To quantitatively verify the semantic coherence of seg-
mented events of different modalities, we introduce Max
Running Semantic Difference (MRSD), inspired by [2]. For
a n-second event clip, we compute the embedding for each
second as {f1, . . . , fn}, and get the most significant seman-
tic change within the clip, denoted as:

max({Diff(fi, fi+1)|i ∈ [1, n− 1]}). (1)

We apply ImageBind [5] and CLAP [13] to extract em-
beddings for visual and audio clips, respectively. As in
Tab. 1, for single-modal events, the clips after the second
stitching stage effectively avoid being overly fragmentary
while maintaining strong semantic coherence. Further, al-
though semantic shifts may occur between single-modal
events within an omni-modal event, no event is truncated,
ensuring the semantic integrity of all events from various
modalities.

Method MRSD-V↓ MRSD-A↓ Avg.len

Visual event boundary (splitting) 0.531 - 3.0s
Visual event boundary (stitching) 0.532 - 10.7s

Audio event boundary (splitting) - 0.676 1.5s
Audio event boundary (stitching) - 0.703 5.8s

Omni-modal event boundary 0.601 0.784 16.7s

Table 1. Semantic coherence and event length analysis. We ran-
domly sample 1K long videos in our LongVALE.

1.2. More Statistics
Based on YouTube metadata, we further analyze the distri-
bution of video categories, as shown in Fig. 1. It reflects
that our LongVALE covers a wide range of video topics.
Besides, since our focus is on long-form videos with rich,
event-driven storylines, the diversity of their content can-
not be easily summarized by just a few simple categories.
Moreover, as shown in Fig. 2, we also illustrate the dis-
tribution of the lengths of our omni-modal event captions
and visualize their word cloud to highlight the rich omni-
modality content within the captions.

1.3. Manual Check and Correction
During the manual check process, annotators are asked to
check each omni-modal event and verify whether the cap-

Figure 1. Distribution of video categories of LongVALE dataset.

tion and the corresponding temporal boundaries are accu-
rate. Besides, videos containing only monotonous back-
ground music and speech are filtered out to ensure the
dataset includes rich sound types. Afterward, during the
manual correction process, another group of annotators cor-
rect all inaccurate annotations and submit the revised ver-
sions. Totally, we checked 2K videos with each taking 3
minutes, and corrected about 300 errors, totally 115 human
hours. We show the interfaces in Fig. 3

1.4. Captioning and AV correlation Prompts

In Sec.3.3, for each segmented video clip, we apply LLaVA-
NeXT-Video (34B) [14] to generate a video caption em-
phasizing dynamic information and apply GPT-4o [10] to
generate keyframe caption emphasizing spatial details. For
each segmented audio clip, we apply Qwen-Audio-Chat
(7B) [4] to generate an audio caption, and utilize Whisper-
Large-V3 [12] to get accurate subtitles. Note that we found
that the performance of the audio captioner lags signifi-
cantly behind that of visual models, leading to more hal-
lucination issues, such as generating repetitive sentences or
incorrect ASR. To address this, we cleaned up these gen-
erations, retaining only general descriptions for each au-
dio event (e.g., ”this is a man speaking”) while removing
the specific speech content. Accurate ASR outputs gener-
ated by the advanced speech recognition model [12] were
used as replacements. After obtaining modality-specific
captions, we instruct Gemini-1.5-Pro [6] to integrate and
correlate them explicitly. The detailed prompts are shown
in Fig. 4. In Sec.3.5, we quantitatively identify the charac-
teristics of our omni-modal event captions, including audio-
visual correlations and fine-grained temporal dynamics us-



Figure 2. Distribution of omni-modality caption length and word cloud.

Figure 3. Screenshots of our manual check and correction interfaces.



ing Gemini-1.5-Pro [6]. Here, we provide the detailed
prompt as shown in Fig 5.

2. Task, Model and Training Data Details
2.1. Detailed Task Definition
We extend three fine-grained video tasks to the novel omni-
modality domain towards omni-perception of long videos.
These tasks emphasize cross-modal reasoning and fine-
grained temporal understanding at the same time. Here, we
provide detailed definitions for these tasks.
Omni-modal temporal video grounding. Given a textual
query describing a specific omni-modal event, the model
is required to identify the start and end timestamps of the
corresponding video segment.
Omni-modal dense video captioning. The task is more in-
tricate, requiring the model to perform both temporal local-
ization and captioning for all omni-modal events occurring
in a given untrimmed video.
Omni-modal segment captioning. Given a temporal
boundary, the task demands the model to generate a caption
summarizing the content of the corresponding omni-modal
event within the untrimmed video.

2.2. Detailed Model Architecture
Multimodal encoders. Given a video, we utilize a frozen
CLIP ViT-L/14 [11] as the Visual Encoder to extract visual
embeddings FV = {vi}Nv

i=1, where Nv denotes the num-
ber of input video frames. Since both non-speech audio
(i.e., natural sound and music) and speech provide crucial
information for multi-modal video understanding, we em-
ploy BEATs [1] and Whisper [12] to extract non-speech
audio embeddings FA = {ai}Na

i=1 and speech embeddings
FS = {si}Ns

i=1, where Na and Ns represent the number of
audio and speech embeddings, respectively. Therefore, the
resulting auditory features of these two encoders are com-
plementary and suitable for general audio input.
Multimodal adapters. We apply linear layers to project the
obtained embeddings from different modalities to get visual
tokens F̂V = {v̂i}Nv

i=1, audio tokens F̂A = {âi}Na
i=1, and

speech tokens F̂S = {ŝi}Ns
i=1 that are aligned with LLM’s

token space. Subsequently, the obtained token sequences
are simply concatenated as:

Z = Concat(F̂V , F̂A, F̂s), (2)

where Z ∈ RN×d, N = Nv + Na + Ns, and d is the hid-
den dimension of LLM. Note that our model also supports
single-modal and dual-modal inputs, allowing for flexible
handling of video data with missing modalities.
Large language model. We use Vicuna-7B-v1.5 [3] as our
LLM to process concatenated multi-modal tokens Z and
user queries for response generation.

2.3. Training Data Details
For boundary perception, we adopted the same template-
based data generation strategy as [7] with the same tem-
plates, where 20% of the data is randomly sampled to gen-
erate single-turn dialogues (omni-modal dense video cap-
tioning), and 80% is used to generate multi-turn dialogues,
i.e., each event is randomly assigned to one of the two tasks
(omni-modal temporal video grounding and segment cap-
tioning). For instruction tuning, the prompt used to generate
omni-modality dialogues is shown in Fig. 6.

3. Experimental Details
3.1. More Implementation Details
We train our model for 2 epochs with a batch size of 128
throughout the two training stages. The AdamW [9] op-
timizer is applied with a cosine learning rate decay and a
warm-up period. The learning rate is 1 × 10−4. The rank
in LoRA is 64 with alpha = 128. Following [7], we merge
the LoRA module trained in the boundary perception stage
with the LLM parameters, and then additionally incorporate
a new LoRA module for instruction tuning. This ensures
the temporal understanding capabilities acquired during the
boundary perception stage are effectively preserved within
the model. We complete the training of our 7B model within
30 hours with 1 RTX-A100 (40G) GPU.

3.2. Evaluation Details
Evaluation of our LongVALE-LLM. For LongVALE-
LLM that only undergoes boundary perception tuning with-
out instruction tuning, we directly use the templates as
queries. Specifically, for the omni-modal dense captioning
task, we employ “Could you please detail the events that
took place during different time segments in the video?” as
the query. For the omni-modal temporal grounding task, we
employ “During which frames does < event > occur in
the video?” as the query. For the omni-modal segment cap-
tioning task, we employ “Could you tell me what happened
from < start > to < end > in the video?” as the query.
LongVALE-LLM that undergoes instruction tuning demon-
strates strong instruction-following ability. For omni-modal
dense captioning, we utilize the following query: “Could
you please detail the events that took place during differ-
ent time segments in the video? List the events in the for-
mat: From xx to xx, event1. From xx to xx, event2...”. For
the omni-modal temporal grounding task, we employ the
query “During which frames does < event > occur in the
video? Give the timestamps in the format: From xx to xx.”
or the omni-modal segment captioning task, we employ the
query “Can you describe what occurred from < start >
to < end > in the video? Please give the event description
directly.”. We also adopt other similar queries such as “Pro-
vide details about the events from < start > to < end >



in the video...”, the results remain consistently close.
Evaluation of other video LLMs. For other Video
LLMs including VideoLLaMA, PandaGPT, NExT-GPT,
VideoChat, Video-ChatGPT, TimeChat, and VTimeLLM,
we tried our best to assess their optimal performance, rec-
ognizing that some were not specifically trained for these
tasks. For models that have been trained on tasks such
as dense video captioning or grounding, we employ the
queries provided in their original studies. For instance, for
TimeChat, we use the original query for dense captioning:
“Localize a series of activity events in the video, output the
start and end timestamp for each event, and describe each
event with sentences. List the events in the format: From
x1 second to y1 second: event1.” Similarly, for temporal
grounding, we use the query: “Detect and report the start
and end timestamps of the video segment that semantically
matches the {sentence}. Give the timestamps in the format:
From xx to xx.” For segment captioning, we identified the
most effective prompt to be the one described below.

For models such as VideoLLaMA, PandaGPT, and
Video-ChatGPT without training for these tasks, we found
that the most effective approach involved using queries that
include the video duration. For dense captioning, the query,
“This video has a duration of D seconds. From which sec-
ond to which second in the video, what event happens? List
the events in the format: From x1 second to y1 second:
event1...” yielded the best results. For grounding, we found
that the query, “This video lasts for D seconds. During this
time, at what specific time does the event {sentence} occur?
Please provide the start and end timestamps in the format:
From x seconds to y seconds, the event happens.” produced
optimal performance. Moreover, we used GPT-4o mini to
efficiently extract timestamps from the generated responses.
Additionally, for segment captioning, we observed that us-
ing “This video has a total duration of D seconds. Please
describe in detail what happens between < start > and
< end > in the video. Be specific about the activities of
individuals, the environment, and any interactions between
people or objects.” provided the clearest and most detailed
outputs. After obtaining the output, we tried to apply mul-
tiple regular expressions to format the output. For those
outputs cannot be processed, we exclude the corresponding
data from metric calculations.

4. More Qualitative Results
As shown in Fig. 7-10, we present more qualitative results
encompassing all evaluated tasks.
Omni-modal segment captioning. In Fig. 7, VTimeLLM
provides only brief descriptions of visual events within the
specified moment, whereas our model offers richer infor-
mation on both dynamic and auditory events, delivering a
more comprehensive and vivid account.
Omni-modal temporal video grounding. In Fig. 8, given

an omni-modal event caption, our model can more accu-
rately pinpoint the time interval when the event occurs,
which fully demonstrates its fine-grained temporal under-
standing capability in an omni-modality domain.
Omni-modal dense video captioning. In Fig. 10, given a
video, our model can identify more omni-modal events and
provide finer-grained descriptions, including key informa-
tion from both visual and audio modalities, enabling a full
understanding of the video’s storyline.
General audio-visual question answering (AVQA). Our
model not only excels in fine-grained omni-modal under-
standing but also demonstrates the ability to accurately an-
swer more general audio-visual questions through cross-
modal reasoning. For instance, in Fig. 9, it can precisely
determine the location of the loudest instrument by integrat-
ing visual and auditory cues.

Overall, these examples vividly illustrate that relying
solely on visual information to understand videos is far from
sufficient. Integrating information from multiple modalities
is both crucial and essential for comprehensive video under-
standing. Furthermore, thanks to our LongVALE dataset,
our model is the first to combine cross-modal reasoning
with fine-grained temporal understanding, setting it apart
from traditional vision-only models.

5. Broader Impact

Risk mitigation. During the data generation, we used
Gemini’s safety mechanism to efficiently block harmful re-
sponses (i.e., harassment, hate, dangerous content, etc.) and
filter out corresponding videos. We also removed all indi-
vidual names with the NLTK framework to protect privacy.
Data Licenses. We sourced our data from the open-sourced
database, ACAV-100M [8] under MIT License1. Besides,
the annotations of our LongVALE will be provided to the
public under CC BY-NC-SA 4.0 license2. We hope our
dataset can serve as a pivotal benchmark for promoting
comprehensive multi-modal video understanding.
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Figure 4. The prompts for the captioning of video clips, keyframes and audio clips, and integrating them for omni-modal events captions.



Figure 5. The prompt used to analyze and identify audio-visual correlations and temporal dynamics in our omni-modal event captions.

Figure 6. The prompt used to generate omni-modal instruction tuning data.



Figure 7. Additional qualitative results on omni-modal segment
captioning task. The sample is from LongVALE test set.

Figure 8. Qualitative results on omni-modal temporal video
grounding task. The sample is from LongVALE test set. The
ground-truth boundaries are displayed in green.

Figure 9. Additional qualitative results on general audio-visual
question answering (AVQA) task. The sample is from Music-
AVQA test set.

Figure 10. Qualitative results on omni-modal dense video caption-
ing task. The sample is from LongVALE test set.
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