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Supplementary Material

A. Implementation Details
A.1. Architecture and Training
We train our model for 70,000 steps using Adafactor [60]
with a learning rate of 1 ⇥ 10�4. We do not use any learn-
ing rate decay. For the ControlNet, we copy Lumiere’s en-
coder stack, add in zero convolutions as in [87], and replace
the first convolutional layer with a new layer that accepts a
T⇥H⇥W⇥C conditioning signal. From the constraints of
the base architecture, we have T = 80 and H = W = 128.
We set C = 64. During training, we sample the number
of input tracks uniformly from 1000 to 2000 inclusive. For
each track we randomly assign a sinusoidal positional en-
coding [70], of 64 dimensions, by sampling integers with-
out replacement from 0 to 16384 – the maximum number
of tracks for a 128⇥ 128 image, and using the correspond-
ing positional embedding for that integer. Note that the en-
coding is completely randomly assigned. In particular, its
spatial location has no bearing on its embedding.

All sampled videos are passed through Lumiere’s spatial
super resolution (SSR) model, resulting in a 1024 ⇥ 1024,
80 frame video at 16 frame per second, for a total of 5 sec-
onds. We use Lumiere’s SSR model as is, without finetun-
ing it for motion conditioning, as we find that the 128⇥128
output of the base model already contains all of the motion
conditioned dynamics.

Data. We train on an internal dataset of 2.2 million videos.
We precompute trajectories on this dataset by center crop-
ping each video to a square, resizing it to 256 ⇥ 256, and
then running BootsTAP [13] with a dense gird of query
points, resulting in 16,384 tracks per video. During training,
a video is sampled, and then tracks are randomly sampled
from this dataset. During the Lumiere fine-tuning, videos
are resized to match Lumiere’s 128⇥ 128 input and output
size.

A.2. Qualitative Results
We provide additional details for qualitative results in
Tab. A1, including text prompt and licensing information.
All images and videos are used with permission and under
open and free licenses. In addition, as can be seen we con-
struct text prompts to describe the scene but not the motion,
in order to limit the influence of text conditioning on the
motion as much as possible.

A.3. Mouse GUI
We record mouse motions through a simple HTML GUI,
which is shown in Fig. A1. It consists of a canvas el-

Figure A1. Mouse Motion GUI. We show a screenshot of the
GUI that we use to record mouse motions. For more information
please see Appendix A.3.

ement which displays the first frame conditioning, labels
that indicate the position of the mouse in the canvas, and
whether or not it is currently being clicked, a button to start
the recording, a countdown timer which gives three sec-
onds before recording starts, and a second countdown timer
which shows when the recording will end. We record 80
frames of mouse input to match the five seconds of video
that our model outputs at 16 frames per second. For each
frame we record the mouse (x, y) position, and a flag indi-
cating whether the mouse is being clicked.

A.4. Interacting with and Drag Editing Images

In order to feed mouse motions to our model, we create
a grid of tracks that is centered on the mouse whenever it
is being dragged. The user may choose the stride of these
tracks, and the size of the grid. We use a square grid of
tracks for simplicity. In addition, a user may choose to have
the tracks “persist,” in that before and after the mouse drag
the tracks remain. This is useful in cases where objects
should stay in place after a drag. A user may also place
down a grid of tracks to “pin” the background in place. Note



Table A1. Figure Details. We provide details about qualitative samples shown in our figures, including text prompts fed to the model and
licensing information. In general, these are sorted by the order that they appear in the paper, moving from left to right, top to bottom.

Description Figure Text Prompt Source URL License License URL

two elephants Fig. 1, Fig. 5 elephants Unsplash link Unsplash license

owl Fig. 1 a close up of a great horned owl Unsplash link Unsplash license

brown bear Fig. 1 a brown bear Unsplash link Unsplash license

squirrel Fig. 1 a squirrel sitting on the ground in the woods Unsplash link Unsplash license

golden retriever Fig. 1, Fig. 7 a golden retriever laying in the grass Unsplash link Unsplash license

man (motion source) Fig. 1, Fig. 8 – private correspondence – permission granted –

macaque Fig. 1, Fig. 8 a macaque monkey Unsplash link Unsplash license

sand Fig. 1, Fig. 3 sand Unsplash link Unsplash license

woman Fig. 1, Fig. 3 a woman private correspondence – permission granted –

parrot Fig. 3 a close up of a green parrot Unsplash link Unsplash license

cow Fig. 3, Fig. 4, Fig. 9 a highland cow standing
in a grassy scottish wilderness

Unsplash link Unsplash license

skull Fig. 4 a white skull on a black background Unsplash link Unsplash license

stool Fig. 4 a living room Unsplash link Unsplash license

hot air balloons Fig. 4 a serene scene of multiple hot air balloons
floating over Cappadocia, Turkey, during sunset

Unsplash link Unsplash license

arches Fig. 5 arches in arches national park, with shrubbery
in the foreground and a bright blue sky

Unsplash link Unsplash license

roses Fig. 5 a red rose Unsplash link Unsplash license

cat Fig. 6 a cat Unsplash link Unsplash license

frog Fig. 6 a close up of a frog Unsplash link Unsplash license

horse Fig. 7 a horse Unsplash link Unsplash license

Earth (motion source) Fig. 8 – Pexels link Pexels license

panda Fig. 8 a panda Unsplash link Unsplash license

monkey (motion source) Fig. 8 – Pexels link Pexels license

trees Fig. 8 birds eye view of trees Unsplash link Unsplash license

chess Fig. 9
close-up of a chessboard with strong
depth of field. The white king
piece is in focus, surrounded by black pawns

Unsplash link Unsplash license

that this setup is identical to how we obtain the “drag-based
image editing” results.

A.5. Geometric Primitives
To make spherical tracks we take points on a sphere and
follow them as the sphere is spun. This gives us a trajectory
of 3D points, which when orthographically projected gives
us 2D tracks. The density of the points, the radius of the
sphere, and the location of the sphere are determined by
the user. Mouse motions are converted to sphere spins by
rotating the sphere through a single axis such that the initial
mouse location matches with the current mouse location at
each frame. This uniquely defines a rotation and ensures
that the sphere tracks the mouse.

A.6. Camera Control
In order to obtain camera control, we run a monocular depth
estimator on the first frame input to the model. This gives
us camera intrinsics as well as depths, allowing us to un-
project into a point cloud. We then project this point cloud
onto a sequence of camera poses forming the desired cam-
era trajectory, resulting in 2D point tracks. In addition,
we run z-buffering to determine occlusions, where only the

closest point that has been projected to some neighborhood
is visible while all other points in that neighborhood are
occluded—unless that point is sufficiently close to the visi-
ble point. This requires choosing a radius for the neighbor-
hood size, and a threshold for a point to remain visible if it
is close enough to the visible point. Both are set manually to
constant values that we find to work well for all examples.

We also discuss translating mouse motion to camera mo-
tion. This is done by having the camera move in such a way
that the mouse is always above the same point. Because this
is underdetermined, we also add the constraint that the cam-
era should stay fixed in the vertical plane. Note that this is
not the only constraint possible. Other constraints may re-
strict the camera to the surface of a sphere around the scene
for example.

A.7. Track Sparsity
For camera control and motion transfer motion prompts, we
obtain a dense set of tracks. Empirically, we find that it is
helpful to randomly subsample these tracks, as using too
many tracks suppresses the video model’s learned priors
from working, while using too few affords too little con-
trol. Somewhere in the middle is a sweet spot. For exam-

https://unsplash.com/photos/two-elephants-near-trees-XWTNFVCTS8E
https://unsplash.com/license
https://unsplash.com/photos/brown-owl-on-a-dark-place-BMO1SzQHWRs
https://unsplash.com/license
https://unsplash.com/photos/brown-bear-near-grass-field-kZ8dyUT0h30
https://unsplash.com/license
https://unsplash.com/photos/a-squirrel-sitting-on-the-ground-in-the-woods-c_KfK8v9aQ4
https://unsplash.com/license
https://unsplash.com/photos/adult-golden-retriever-sitting-on-green-grass-YI_iWr_12kE
https://unsplash.com/license
https://unsplash.com/photos/shallow-focus-photography-of-monkey-ghD1Znf8gps
https://unsplash.com/license
https://unsplash.com/photos/focus-photo-of-brown-sand-eYWNaMffWHI
https://unsplash.com/license
https://unsplash.com/photos/a-close-up-of-a-green-parrot-with-a-red-beak-uhEwDYq0iM0
https://unsplash.com/license
https://unsplash.com/photos/a-long-haired-cow-standing-on-top-of-a-grass-covered-field-qiQmvXnQ_SE
https://unsplash.com/license
https://unsplash.com/photos/a-skeleton-is-standing-in-a-black-and-white-photo-B5Ddx7kx8yk
https://unsplash.com/license
https://unsplash.com/photos/turned-off-flat-screen-television-on-white-dresser-dv9AoOYegRc
https://unsplash.com/license
https://unsplash.com/photos/a-bunch-of-hot-air-balloons-flying-in-the-sky-UeX_qw9lnzc
https://unsplash.com/license
https://unsplash.com/photos/arches-national-park-utah-during-daytime-Aydu-0d4Iwc
https://unsplash.com/license
https://unsplash.com/photos/shallow-focus-photography-of-red-flower-LZCGRSQxn6E
https://unsplash.com/license
https://unsplash.com/photos/white-and-gray-cat-IFxjDdqK_0U
https://unsplash.com/license
https://unsplash.com/photos/brown-frog-in-close-up-photography-8GQ5ELnU-rM
https://unsplash.com/license
https://unsplash.com/photos/shallow-focus-photography-of-black-donkey-vUpXnK5ufwg
https://unsplash.com/license
https://www.pexels.com/video/digital-animation-of-planet-earth-10880732/
https://www.pexels.com/license/
https://unsplash.com/photos/a-panda-bear-in-the-grass-ScHhzUSG2x8
https://unsplash.com/license
https://www.pexels.com/video/close-up-footage-of-a-monkey-eating-its-food-7710018/
https://www.pexels.com/license/
https://unsplash.com/photos/aerial-view-of-green-trees-EI0pK6euSKE
https://unsplash.com/license
https://unsplash.com/photos/a-close-up-of-a-chess-board-with-pieces-on-it-y5nGbO1u8mA
https://unsplash.com/license


ple, for the majority of the depth-based motion prompts, we
use 1024 tracks, which we find offers a good balance be-
tween control and emergent video prior effects. In other
cases, such as transferring the motion of the person’s face
in Fig. 8, we find that fewer tracks is helpful in dealing with
misalignments between the source video and the input first
frame. Finally, for out-of-domain motion transfer as in the
monkey chewing example in Fig. 8, we find that very dense
tracks help. We use 1500 tracks, as we need a lot of control
to apply such an unnatural motion to the first frames.

A.8. Davis Eval
We conduct a quantitative evaluation of first frame, text, and
track conditioned video generation using the DAVIS valida-
tion dataset, with a subset of results in Tab. 1 and full results
in Tab. A2. The validation dataset contains 30 videos from
a wide range of scenes, involving subjects from sports to
humans to animals to cars. In order to create inputs for the
models, we extract tracks using BootsTAP [13]. First frame
inputs are square crops of the first frames of the videos, and
text prompts are the titles of the videos given by the dataset
and typically consist of a word or two. For each evalua-
tion for a given number of tracks, we randomly sample that
number of tracks for conditioning.

To ensure a fair comparison, we make the following ac-
commodations for baselines. In addition to a first frame,
tracks, and a text prompt, DragAnything requires segmen-
tation masks for objects that the tracks move. To get
this, we use the provided ground truth segmentations in
the DAVIS dataset. Image Conductor is a finetuned ver-
sion of AnimateDiff and is trained on videos of resolution
384 ⇥ 256. We initially gave the model 256 ⇥ 256 im-
ages, and found that we got reasonable results. However,
we experimented with reflection padding the input frame to
384⇥256 and cropping the output, which gave slightly bet-
ter results which we report.

A.9. Human Studies
To perform the human studies, we handcraft 30 inputs with
diverse image subjects and input motions. Motions con-
sist of a single uninterrupted trajectory. Text prompts are
designed to describe the image, but not the desired mo-
tion, to factor out the influence of text as much as possible.
DragAnything requires masks, which we obtain by running
SAM [38] on the first frame with the initial location of the
tracks as query points. For our method, we turn the trajec-
tory into a grid of tracks as described above. We then feed
these inputs to the models and take a single random sample.
We follow the same protocol as above for Image Conductor.
This results in 30 samples for each model and 90 samples
in total.

We run a two alternative forced choice (2AFC) test be-
tween our model and the baselines. We display a sample

Figure A2. Test and Train Metrics. Here we plot out training
loss, along with PSNR, SSIM, LPIPS, and EPE on our DAVIS
test set. Note that there is no correlation between the training loss
and the test metrics, and that the test metrics show no signs of
improvement until step 20,000 at which point the network learns
quite rapidly.

from our method and a sample from the baseline in a ran-
dom order with a video of the corresponding motion condi-
tioning in the middle, visualized as a moving red dot. Par-
ticipants are then asked three questions. Verbatim, we ask
(1) Which video better follows the motion of the red dot? (2)
Which video has the more realistic motion? (3) Which video
is of higher visual quality? These questions are designed to
measure the adherence of the motion to the conditioning,
the quality of the motion, and the overall visual quality of
video, respectively. This results in a total of 180 questions.

We recruit participants for our study through Amazon
Mechanical Turk (MTurk). To ensure responses are of high
quality, we add three “vigilance” questions with clearly cor-
rect answers. We discard all responses that fail any of
these three questions. Each question is conducted as a sep-
arate study, and the resulting number of participants are
N = 103, N = 103, and N = 115 for each question re-
spectively. This results in a total of 19,260 answers.



B. Training Observations

In training, we observe similar behavior as noted in Con-
trolNet [87] and ControlNext [50]: 1) training loss does not
directly correlate with model performance, and 2) “sudden
convergence” where in a few epochs the model goes from
not adhering to control signal to full adherence. Control-
Next identifies both of these behaviors as coming from the
zero initialization and offers cross normalization as a po-
tential solution. We believe this and other future control
scheme is a promising avenue for future work in track con-
ditioned video generation. We show training loss and test
metrics in Fig. A2. As can be seen, the training loss is fairly
inscrutable, while the test losses do not begin to decrease
until step 20,000.

C. Full Quantitative Results

In Sec. 5 we present DAVIS evaluation results for N =
{1, 16, 512, 2048}. In Tab. A2 we present results for N = 4
and N = 64 as well, which we omit from the main paper
for brevity.

Table A2. Quantitative Evaluations. We evaluate the appear-
ance (PSNR, SSIM, LPIPS, FVD) and motion (EPE) of generated
videos using the validation set of the DAVIS dataset. Please note
that each method is trained from a different base model.

# Tracks Method PSNR " SSIM " LPIPS # FVD # EPE #

N = 1
Image Conductor 11.468 0.145 0.529 1919.8 19.224
DragAnything 14.589 0.241 0.420 1544.9 9.135
Ours 15.431 0.266 0.368 1445.2 14.619

N = 4
Image Conductor 12.017 0.176 0.499 1735.0 18.921
DragAnything 15.040 0.272 0.397 1497.2 8.946
Ours 15.820 0.319 0.353 1207.7 12.985

N = 16
Image Conductor 12.184 0.175 0.502 1838.9 24.263
DragAnything 15.119 0.305 0.378 1282.8 9.800
Ours 16.618 0.405 0.319 1322.0 8.319

N = 64
Image Conductor 12.513 0.180 0.503 1947.7 26.316
DragAnything 14.499 0.274 0.393 1342.0 10.642
Ours 18.000 0.513 0.265 951.4 4.127

N = 512
Image Conductor 11.902 0.132 0.524 1966.3 30.734
DragAnything 15.055 0.289 0.381 1379.8 10.948
Ours 18.968 0.583 0.229 688.7 4.055

N = 2048
Image Conductor 11.609 0.120 0.538 1890.7 33.561
DragAnything 14.845 0.286 0.397 1468.4 12.485
Ours 19.327 0.608 0.227 655.9 3.887

D. Human Pose Control

We show results on using our method to control humans
through human pose estimated keypoints in Fig. A3. To do
this, we first estimate the pose with an off-the-shelf model,
and then apply motions to desired keypoints and feed it to
our model.

Figure A3. Pose Conditioning. We estimate human pose, animate
it, translate it to tracks, and then feed it to our model. In each row,
we show frames from generated videos with input tracks overlaid
on top.

E. Motion Magnification
One additional application of our model is motion magnifi-
cation [40, 47, 49, 71, 77]. This task involves taking a video
with subtle motions and generating a new video in which
these motions have been magnified, so that they are easier
to see. We do this by running a tracking algorithm [12] on
an input video, smoothing the tracks by applying a Gaussian
blur over space and time, and then magnifying the resulting
tracks. We then feed the first frame of the input video and
the magnified tracks to our model. We show results, along
with space-time slices, in Fig. A4. We found that smooth-
ing was necessary to reduce noise in the estimated tracks.
As a result the magnified tracks are not exactly at the spec-
ified magnification factor, but nonetheless are qualitatively
useful in revealing subtle motions. We expect more accu-
rate point tracking algorithms will remove the need for this
smoothing step.
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Figure A4. Motion Magnification. We show the result of using
our model to perform motion magnification. We show the first
frame of two videos, and space-time slices through the blue line at
different magnification factors.
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