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This document offers supplementary details about our
method that could not be included in the main paper due
to space constraints.

1. Optimization of the Facial Area
In this section, we illustrate the avatar optimization pro-
cess for the facial area, highlighting the efficiency of our
framework in swiftly capturing the person’s facial features
through strategic initialization, before advancing to the op-
timization of the entire head.

1.1. Fitting Splats to the Mean Facial Surface
As discussed in the main paper (Sec. 3.4), it is beneficial
to initialize person-specific avatar generation using a set of
Gaussian Splats representing the mean colored facial sur-
face, rather than just the upsampled FLAME point cloud.
This approach requires an initial optimization of all splats’
parameters (including covariance) based on mesh render-
ings with the mean texture, as merely assigning the RGB
values of each vertex to the point cloud would still result in
a discontinuous representation. This fitting process is de-
scribed in Sec. 3.4 and is further illustrated in Fig. 1 for
clarity. Please note that this step is independent of the input
subject and is performed only once. The fitted splats, being
identical for all subjects, serve as a precomputed initializa-
tion for subsequent subject-specific optimizations.

1.2. Personalization of the Facial Area
As described in the paper, our person-specific SDS opti-
mization begins with the mean texture-fitted splat and pro-
ceeds in two phases: first optimizing the facial region, fol-
lowed by optimizing the entire head. The initial face-only
phase consists of 500 iterations, during which we sample
views with azimuth angles in the range [−110, 110] and el-
evation angles in the range [60, 90]. To capture finer details,
we zoom in during this phase, using a field of view of 0.4. In
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Figure 1. Initial mean texture fitting. The splats in the facial area
are optimized based on mesh renderings with the mean texture. In
the end, the splats closely replicate the mean textured mesh.

Figure 2. Face-only optimization progression. The splats in the
facial area smoothly transition from the mean texture to the input
subject’s face.

Fig. 2, we illustrate the progression of this initial optimiza-



tion, showing how the mean texture-fitted splat smoothly
transforms into the subject’s face while maintaining corre-
spondence with the underlying template mesh, highlighting
the effectiveness of our approach.

2. Ablation Studies
Below, we provide additional results demonstrating the ne-
cessity of various components in our pipeline.

2.1. Importance of Mean Texture Initialization
We argue that template regularizers alone are insufficient
to guarantee template correspondence in an SDS setup. To
support this claim, we present results from the initial fa-
cial area optimization phase, comparing scenarios with and
without mean texture initialization, as shown in Fig. 3.

Figure 3. Mean texture initialization impact. Although template
regularization achieves geometrical correspondence, the absence
of the proposed initialization (top) leads to significant texture mis-
alignment, disrupting the overall correspondence. Without mean
texture initialization, facial features are often placed to incorrect
locations (e.g., the mouth placed on the chin) or exhibit artifacts,
such as duplicate features (e.g., the nose). In contrast, mean tex-
ture initialization (bottom) ensures proper correspondence from
the early stages of the process.

2.2. Arc2Face Augmentation and View Embeddings
Furthermore, we demonstrate the necessity of both LoRA-
based Arc2Face fine-tuning and the use of view text embed-
dings in conjunction with the identity embedding for condi-
tioning. These processes are crucial for achieving realistic
3D avatars without Janus artifacts or inconsistencies.

As described in the main paper, we create view-enriched
embeddings by blending the default identity embedding
cdefault with the view embedding cview using the formula:

cd = b · cdefault + (1− b) · cview, (1)

where b ∈ [0, 1] balances the influence of identity and view.
In Fig. 4, we present renderings of the avatar produced

after the first half of the optimization steps for five different
variations of our method:

1. Default Arc2Face Model: Using the default ID-
conditioned Arc2Face model as the guidance model
without any modifications.

2. LoRA-Extended Model without View Embeddings:
Using the LoRA-extended model but without view em-
beddings, effectively setting the view embedding weight
to zero (1− b = 0).

3. Strong View Embedding Weight (1−b = 0.45): Using
a strong weight for the view embedding to emphasize
view information.

4. Medium View Embedding Weight (1 − b = 0.3): Us-
ing a medium weight for the view embedding, providing
a balanced influence between identity and view.

5. Our Method (1 − b = 0.15): Using the blending fac-
tor we chose for our method, which we found to offer
the best trade-off between identity preservation and view
consistency.
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Figure 4. Impact of augmenting Arc2Face for 360° generation
and using view embeddings during distillation. As expected,
the default model is limited to modeling the frontal view, resulting
in multiple inconsistencies and Janus artifacts in other views, as
well as oversaturated colors, rendering it unsuitable for guidance
in its default state. The LoRA-extended model without view em-
beddings performs better, achieving good identity preservation and
improved side views, but it still exhibits Janus effects in the back
view. Using strong weights for view embeddings generates very
consistent heads with good back and side views but significantly
reduces identity fidelity. In contrast, our selection of a low weight
for view embeddings (final row) achieves the best of both worlds,
combining identity preservation with consistency in the generated
heads, and eliminating Janus effects.

3. Additional Qualitative Results
In this section, we showcase additional 3D avatars gener-
ated by our method for subjects with significantly diverse
characteristics. As can be seen in Fig. 5, our method ex-
hibits strong generalizability, capable of producing high-



Figure 5. Arc2Avatar is not limited to celebrities. Our method exhibits strong generalization, providing realistic and consistent 3D
avatars for individuals of different ages, ethnicity, and backgrounds.

fidelity, ID-consistent 3D heads for any individual.

Moreover, in Fig. 6, we provide renderings from multiple
perspectives for many samples, demonstrating our method’s
3D consistency and fidelity. Notably, our approach effec-
tively generates realistic views, including challenging back-
head perspectives, which are inferred solely from frontal in-
put images thanks to our careful adaptation of Arc2Face for
diverse view generation using frontal inputs.

4. Additional Qualitative Comparisons

Although not directly comparable to our method, we quali-
tatively compare with a 3D-aware portrait synthesis method
(GRAM-HD) [7] and a separate multi-view diffusion ap-
proach (Wonder3D) [4] in Fig. 7.

5. Failure Cases

As discussed in the main paper, our method has certain lim-
itations, including the introduction of artifacts and the oc-
casional addition of expressions by Arc2Face in the neutral
optimization stage despite our efforts to enforce consistency
with the neutral mesh, disrupting correspondence with the
template. In Fig. 8, we present examples showing these is-
sues.

6. Implementation Details

6.1. Arc2Face Fine-Tuning
We fine-tuned the LoRA-augmented Arc2Face model fol-
lowing a setting similar to [6]. In particular, we used a res-
olution of 512 × 512 pixels for our synthetic 360° dataset
and trained the model with AdamW [5] and a learning rate



Figure 6. Renderings of generated 3D avatars from diverse viewpoints. Our method extends beyond realistic frontal views to produce
complete 3D head models that can be rendered from any angle.

of 1e-4 for the LoRA layers, using one NVIDIA A100 GPU
and a batch size of 4. We trained for 100K iterations, as fur-

ther fine-tuning caused noticeable identity loss, making it
harder for SDS to handle these inconsistencies.
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Figure 7. Qualitative comparisons. Competing methods generate plausible frontal and slightly side views, but struggle with side and back
views, demonstrating the advantages of our method.

6.2. FLAME-based Point Cloud Initialization

We initialize the splats based on the FLAME mesh, which
consists of Noriginal = 5023 vertices. However, given the
low vertex count, we first perform dense sampling of the
mesh. Maintaining consistency in the upsampling pro-
cess is essential to ensure that when expression blend-
shapes are applied to the facial region, the resulting defor-
mations are consistently upsampled and accurately incor-
porated into the upsampled facial mesh. To achieve this,
we apply the subdivide() method from the trimesh
[1] library, which implements the Midpoint Subdivision
algorithm. This process upscales the original mesh to
Nupsampled = 79936 vertices, with the majority concentrated
in the facial area of interest (Nface = 70033 vertices) and
the remaining Nhead = 9903 vertices allocated to the rest
of the head. Since we are only concerned with maintaining
consistent upsampling within the facial region, we separate
the mesh into facial and head components. The head com-
ponent is then independently upsampled to Nhead = 73050
vertices. Finally, the facial and head meshes are recon-
nected, resulting in a unified point cloud that serves as the
initialization for the optimized splat Ginit(x).
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Figure 8. Failure cases. Artifacts may appear around the ears and
neck regions. Additionally, certain inputs can bias the optimiza-
tion towards smiling or surprised expressions, despite the underly-
ing neutral mesh. Nevertheless, the avatars consistently preserve
the individuals’ identities.

6.3. SDS-ISM Parameters
Our distillation framework is based on ISM [3]. The set-
tings detailed below are presented in full correspondence
with their method, following the same format.

6.3.1. Guidance Parameters
As discussed in the main paper, our strong prior and care-
fully designed task-specific SDS process, along with set-
tings refined through experimentation, eliminate the need
for the high guidance scale typically associated with SDS
approaches, effectively avoiding color issues. Specifically,
we employ a scale of 1 and the Perp-Neg algorithm [2], and,
following the notation of [3], we use δT = 40 paired with
δS = 20, utilizing 20 inversion steps. This results in 3D
avatars that exhibit high detail and natural color.

6.3.2. Camera Parameters
We utilize a random camera sampling strategy with progres-
sively relaxed view ranges during training. The initial cam-
era configurations are:
• Radius range: [5.2, 5.5].
• Maximum radius range: [4.2, 5.2].
• Field of view (FoV) range: [0.53, 0.53].
• Maximum FoV Range: [0.3, 0.7].
• Elevation angle range (θ): [40◦, 100◦].
• Azimuth angle range (ϕ): [−180◦, 180◦].

Starting from iteration 2000, we progressively relax the
camera view ranges every 2000 iterations by scaling the pa-
rameters:
• FoV factor: [0.8, 1.1].
• Radius factor: 0.95.

6.3.3. Optimization Parameters
We train our avatars with a rendering resolution of 512×512
pixels for 6000 iterations on a single NVIDIA RTX 4090
GPU (24GB) using a batch size equal to 4. Optimizing an
avatar for an input subject takes approximately 80 minutes,
and the final avatar typically consists of nearly 110K Gaus-
sians.

The optimization is performed using the Adam optimizer
with β1 = 0.9, β2 = 0.999, and ϵ = 1e−15. The learning



rates for different parameters are scheduled to decay expo-
nentially from their initial values to final values over the
course of training, using a delay multiplier of 0.01:
• Position (µ): lrinit = 1.6e−4, lrfinal = 1.6e−6.
• Color (f ): lrinit = 5e−3, lrfinal = 3e−3.
• Opacity (α): lr = 5e−2.
• Scaling (s): lrinit = 5e−3, lrfinal = 1e−3.
• Rotation (r): lrinit = 1e−3, lrfinal = 2e−4.

6.4. Splat Modification Strategy
To refine the splats in the non-facial areas, we initiate den-
sification and pruning at iteration 1000, performing them
every 500 iterations until 5000. During this period, opac-
ity resets are also applied every 1000 iterations. In the fi-
nal 1000 iterations, we further refine the splats by pruning
disconnected splats every 100 iterations to remove isolated
noise and applying targeted pruning based on opacity and
size every 200 iterations.

6.5. Camera Sampling Strategy
Given the approximate symmetry of human heads, we ob-
served that sampling an equal number of front and back
views during training was more beneficial than randomly
sampling any azimuth angle. To achieve this, we enforced
the sampling of four azimuth angles for each training step:
• Two angles from the frontal range [−90◦, 90◦]: one from
[−90◦, 0◦) and one from [0◦, 90◦).

• Two angles from the back range [−180◦,−90◦) ∪
(90◦, 180◦]: one from [−180◦,−90◦) and one from
(90◦, 180◦].
This strategy ensured a balanced and diverse set of

views, encompassing frontal, back, and side perspectives.

6.6. Template Regularization
As discussed in the main paper, we employ strong template
proximity regularizers, specifically the L2 distance regular-
izer and the Laplacian difference regularizer. Through ex-
perimentation, we found that using high weights for these
regularizers leads to very strong template correspondence.
Therefore, we selected a value of 1e+8 for both.
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