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This supplementary material includes the computational
complexity analysis, further numerical experiments, an ab-
lation study on the calibration dataset size, and qualitative
results. We also discuss the limitations and broader impact
of this work.

1. Computational Complexity

In this section, we present the computational complexity
analysis of CASP compared to the baselines. Tab. 1
shows the results on LLaVA-Next-Video-7B (8 frames) [25]
with ”Eager” attention, a batch size of 1, and a maxi-
mum/minimum new token count of 128. We provide the
prefilling time in seconds and throughput in tokens per sec-
ond (Tok/s). Additionally, we report the prefilling peak
memory, end-to-end peak memory, and model size.

Note that the quantization procedure generally involves
two criteria that can affect the inference time: 1) Ma-
trix multiplication of low-precision tensors, which is often
faster than float tensors. 2) Dequantization at the inference
stage to FP16, which introduces overhead. Tab. 1 shows the
inference time of AQLM [2] and QuIP# [16] compared with
the original model in FP16. Comparing QuIP# and AQLM,
QuIP# is faster via fusing query, key, and value weight ma-
trices in the attention layer and fusing gate and up weight
matrices in the MLP layer.

CASP contains two components that impact the infer-
ence time: 1) Low-rank factorization of Wq and Wk. 2)
Quantizing important layers to higher bits (e.g., 3-bit).
Compressing Wq and Wk via low-rank decomposition (i.e.,
removing a high percentage of eigenvalues from the Q
and K weights) directly reduces FLOPs, making inference
faster. In other words, regardless of the hardware and kernel
design, low-rank factorization always provides run-time im-
provement as most of the parameters are removed. As the
second row of Tab. 1 shows, CASPOriginal, i.e., the FP16
model with 75% compression of Wq and Wk, results in
nearly 4% speed-up due to smaller weight matrices.

On the other hand, quantizing important layers to higher
bits may introduce overhead compared to uniformly quan-
tizing all layers to 2-bit. This is because 3-bit quantized

Method Bit Prefill Throughput Prefill End-to-End Model
Time (s) (Tok/s) Peak-Mem Peak-Mem Size

(GB) (GB) (GB)

Original 16 0.41 2.2 13.5 13.6 13.5
CASPOriginal 16 0.39 2.3 12.0 12.1 13

AQLM 2 0.51 1.8 3.2 3.4 2.7
CASPAQLM 2 0.50 1.9 3.1 3.3 2.7

QuIP# 2 0.39 2.3 3.2 3.4 2.7
CASPQuIP# 2 0.39 2.3 3.4 3.6 2.7

Table 1. Runtime and memory usage of the baselines and CASP.
CASP does not introduce any overhead compared to the baselines.

models are slightly slower than the 2-bit ones [2, 16]. Over-
all, CASP does not introduce any overhead for the base-
lines. In some cases such as CASPAQLM, it can slightly im-
prove the inference speed due to the low-rank factorization.
It should be noted that our primary goal in this work is not
to achieve faster inference over the baselines but to enhance
their performance with the same model size, memory, and
inference time.

Tab. 1 also compares the prefilling and end-to-end peak
memory of CASP with the baselines. For a fair comparison,
we matched the model size of CASP with the baselines, en-
suring all 2-bit quantized checkpoints are 2.7GB. CASP’s
peak memory is slightly higher than the baseline due to op-
timal bit allocation. This peak memory is influenced by the
higher bits allocated to important layers and the extent of
low-rank compression applied to Wq and Wk.

2. Further Quantitative Results
In the main manuscript, the experimental results on 5 multi-
choice QA datasets for image-language understanding were
reported. In this section, Tab. 2 presents additional quanti-
tative results on image captioning datasets such as NoCaps
[1], COCO-Caption [10], and Flickr30K [21], as well as
GQA [6]. The primary evaluation metric used for open
QA and image captioning tasks is CIDEr (Consensus-based
Image Description Evaluation) [17], which measures the
similarity between a generated caption and a set of refer-
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LLaVA-1.5-7B

NoCaps COCO17 Flick30K GQA Avg.
Bit (CIDEr↑) (CIDEr↑) (CIDEr↑) (EM ↑) Rel Imp.

Original 16 0.102 0.106 0.74 0.61

GPTQ 2.2 0.53 0.62 0.38 0.13
CASPGPTQ 2.2 0.92 0.100 0.64 0.52 +125%

AQLM 2 0.73 0.87 0.57 0.43
CASPAQLM 2 0.91 0.107 0.68 0.53 +22%

QUIP# 2 0.102 0.103 0.75 0.57
CASPQuIP# 2 0.102 0.102 0.77 0.57 +0.5%

Table 2. Further quantitative results on open-ended QA tasks and
GQA dataset with LLaVA-1.5-7B.

Calibration LiveB LWilder LCOCO Avg.
Size (PPL↓) (PPL↓) (PPL↓) (PPL↓)

128 7.8 9.0 5.9 7.5
256 7.8 8.5 5.8 7.3
512 7.9 8.3 5.7 7.3
1024 7.9 8.2 5.7 7.2

Table 3. Experiment on the calibration data size using CASPAQLM

with LLaVA-1.5-7B.

ence captions. As summarized in Tab. 2, CASP obtains
125% and 22% average relative improvements over GPTQ
and AQLM. QUIP# almost obtains the same results as the
FP16 model and even outperforms the FP16 model in the
Flickr30K dataset. However, we still observe 0.5% average
relative improvements with CASPQuIP#.

3. Calibration Dataset Size
Tab. 3 demonstrates experiments on the number of samples
in the calibration dataset used for CASPAQLM with LLaVA-
1.5-7B. We observe slight performance improvements with
increasing the calibration size from 128 samples to 1024
samples. Although increasing the size of the calibration
dataset improves the overall performance of the model, it
also increases the cost and time of the calibration and op-
timization procedure for quantization and low-rank factor-
ization.

4. CASP and KV Cache Quantization
KV cache compression has emerged as a critical technique
to optimize memory efficiency in large language models by
reducing the size of the key-value cache used during in-
ference. One recent method for KV cache quantization is
KIVI [13], which achieves significant reductions in storage
requirements while preserving model performance. On the
other hand, CASP focuses on weight-only compression, tar-
geting the model’s parameters to achieve similar efficiency
gains. These two approaches are orthogonal, meaning they
operate on different components of the model and can be
combined to further enhance overall compression.

As KIVI and CASP are orthogonal methods, we have
combined them. Tab. 5 demonstrates the results on Truth-
fulQA (BLEU Score↑) using Llama2-7B as the base model.
KV cache is quantized to 2 bits and model weights are quan-
tized to 2.2 bits (on average). As seen, CASPGPTQ+KIVI
offers a significant improvement over GPTQ+KIVI.

5. CASP vs. Low-Rank Decomposition
Applying simple low-rank decomposition to ALL weight
matrices results in significantly worse performance than
CASP. This is because only Wq and Wk are low-rank in
LMMs and LLMs. Tab. 6 shows the results of CASP with
SOTA low-rank decomposition methods SVD-LLM [18]
and MoDeGPT [9] under extreme compression. We use
LLama2-7B as the base model and report perplexity (PPL↓)
on the Wikitext dataset.

6. Further Analysis on Bit Allocation
The optimal bit allocations returned by our method are typ-
ically non-integer. To ensure simplicity and compatibility
across various quantization techniques, we rounded these
values to integers. Calculating exact non-integer average
bits for each layer would require modifying the codebook
to accommodate non-predefined values for techniques such
as AQLM and QuIP#. This adjustment, however, would
necessitate the creation of new kernels for decoding dur-
ing inference—one kernel for each layer. While using non-
integer bits could potentially yield better results, exploring
this avenue is left as future work.

In our experiments, we computed the optimal bit allo-
cation for each individual layer in the model. However,
since adjacent layers often share similar levels of impor-
tance, we investigated the possibility of sharing bit alloca-
tions across adjacent layers. Specifically, we tested shared
optimal bit allocations for every three layers on LLaVA-1.5-
7B. This approach resulted in only a negligible reduction of
0.7 seconds in overall computation time, which is insignif-
icant compared to the total quantization times: 40 minutes
for GPTQ, 2 hours for QuIP#, and 6 hours for AQLM.

7. Datasets, Tasks, and Metrics
We briefly introduced the 8 image-language and 5 video-
language datasets used in the experiments of the main
manuscript. In addition, the system prompt (instruction)
used to get output results for each dataset was given. Sim-
ilar to the experiments on LLMs, when measuring perplex-
ity we do not provide any system prompt [3]. The details of
datasets used for image-language and video-language un-
derstanding tasks are presented in Tab. 4, which also in-
cludes the extra 4 datasets discussed in Section 2.

As shown in the table, diverse range of tasks includ-
ing image captioning, visual reasoning, open-ended visual



Dataset Task Metric System Prompt

Im
ag

e-
L

an
gu

ag
e

COCO-2017 [10] Image Captioning CIDEr Provide a one-sentence caption for the provided image.
Flicker30k [21] Image Captioning CIDEr Provide a one-sentence caption for the provided image.
GQA [6] CE-VQA Eaxct Match Answer the question using a single word or phrase.
MMBench [12] MC-VQA Accuracy Answer with the option’s letter from the given choices directly.
MME [4] CE-VQA Perception Score Answer the question using a single word or phrase.
LiveBench [19] OE-VQA PPL N/A
LLaVA-Bench-Wilder [7] OE-VQA PPL N/A
LLaVA-Bench-COCO [7] Image Captioning PPL N/A

MMU [23] CE-VQA,OE-VQA Accuracy
Answer with the option’s letter from the given choices directly, OR
Answer the question using a single word or phrase.

Nocaps [1] Image Captioning CIDEr Provide a one-sentence caption for the provided image
ScienceQA-Image [14] Visual reasoning Exact Match Answer with the option’s letter from the given choices directly.
SeedBench-Image [8] MC-VQA Accuracy Answer with the option’s letter from the given choices directly.
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e ActivityNet [22] CE-VQA

Accuracy/
GPT-Assisted score Answer the question using a single word or phrase.

VideoChatGPT-
temporal [15]

OE-VQA
Rouge, PPL, and

GPT-Assisted scores Evaluate the temporal accuracy of the prediction compared to the answer.∗

VideoDetailCaption [7] OE-VQA
Rouge, PPL, and

GPT-Assisted scores N/A

VideoMME (VMME) [5] MC-VQA Accuracy Answer with the option’s letter from the given choices directly.
NextQA [20] CE-VQA WUPS Answer a question using a short phrase or sentence.

Table 4. Details of the datasets, the corresponding tasks, metrics, and prompts used in our experiments. CE-VQA: Closed-Ended Visual
Question Answering, OE-VQA: Open-Ended Visual Question Answering, MC-VQA: Multiple-Choice Visual Question Answering. ∗:
Only the main sentence from the prompt is shown here.

Base Base+KIVI GPTQ GPTQ+KIVI CASPGPTQ CASPGPTQ+KIVI

26.0 21.6 5.0 2.8 23.5 11.4

Table 5. CASP combined with KV cache quantization.80% Compression (≈3.2 bits) 87% Compression (3 bits)
SVD-LLM ModeGPT CASPGPTQ CASPAQLM CASPQuIP#

276.4 245.8 21.8 8.5 8.1

Table 6. CASP vs. low-rank decomposition methods.

question answering, closed-ended visual question answer-
ing, and multiple-choice visual question answering are used
to evaluate the performance of the baseline methods com-
pared with ours. Note that the system prompts are the de-
fault prompts provided in the lmms-evals evaluation pack-
age [24].

8. Qualitative Results
In this section, we provide qualitative results from
LiveBench [19], COCO-Caption [10], and LLaVA-Bench-
Wilder [11] datasets.

LiveBench includes screenshots from news web pages,
with multiple questions asking for details about each image.
Fig. 1 and 2 show two randomly chosen examples from
this dataset. Below each image, we display the responses
from LLaVA-1.5-7B (FP16), baselines (GPTQ, AQLM, and
QuIP#), and CASP. Each response is scored by GPT-4o out
of 10. CASP consistently improves the baseline responses
by approximately 1.5 points.

Fig. 3 and 4 present two samples from the COCO-

Caption dataset, which includes images with multiple short
captions for each image. This task is generally easier com-
pared to LiveBench. We observe consistent improvements
in responses by CASP, with an average increase of 2.6
points. In Fig. 3, CASPQuIP# addresses the redundancy
in QuIP#’s answer by including most of the important ele-
ments in the picture. In Fig. 4, a major element, “Man hangs
off the side of the motorcycle,” is overlooked by both the
FP16 model and quantized models. However, CASPQuIP#
eliminates unnecessary information from the FP16 response
(e.g., “A backpack can be seen. . . ”). Comparing the re-
sponses of QuIP# and CASPQuIP#, the latter adds important
aspects such as “the motorcycle is leaning over” and “the
rider is leaning into the turn.”

Fig. 5 and 6 are from LLaVA-Bench-Wilder. The
questions are complex and include “memes” that require
the model to understand indirect meanings in the pictures.
CASPQuIP# scores are equal to or better than the FP16 model
in these examples. Overall, these qualitative results show
the effectiveness and superiority of CASP compared to the
baselines in terms of basic understanding and addressing
important details in the images.

9. Limitations and Future Work

This work has some limitations that need to be addressed
in future research. The low-rank factorization method used
in this work is not quantization-friendly, leading to more
outliers in the factorized matrices compared to the origi-



nal weight matrices. Addressing this issue could improve
CASP’s results in future work.

We also observe that the extreme compression regime
applied in CASP decreases accuracy for samples with small
images and complex questions, as there is less redundancy
in the attention. Providing a dynamic rank selection for
such cases, similar to the dynamic visual token of LLaVA-
1.6 could address this problem. In this study, we presented
results without fine-tuning the quantized models. Future
research should explore efficient layer-wise fine-tuning to
further enhance the performance of quantized models com-
bined with low-rank factorization.



Figure 1. Qualitative results from LiveBench dataset. The GPT-4o scores out of 10 are shown for each method.



Figure 2. Qualitative results from LiveBench dataset. The GPT-4o scores out of 10 are shown for each method.



Figure 3. Qualitative results from COCO-Caption dataset. The GPT-4o scores out of 10 are shown for each method.



Figure 4. Qualitative results from COCO-Caption dataset. The GPT-4o scores out of 10 are shown for each method.



Figure 5. Qualitative results from LLaVA Bench in-the-wild dataset. The GPT-4o scores out of 10 are shown for each method.



Figure 6. Qualitative results from LLaVA Bench in-the-wild dataset. The GPT-4o scores out of 10 are shown for each method.
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