
Appendices
A. Acknowledgment
We are thankful to Jindong Gu and Xiangyu Qi for helpful feedback on an earlier version of this paper.

B. Limitations
We would like to point out some of the limitations of this work in its current form.
• All evaluations in this paper have been performed on static datasets. Hence, it remains to be seen how I!!"#$ fares against

dynamic (e.g., iterative or whitebox) attacks.
• In current evaluations, I!!"#$ is not evaluated against defense-aware attacks.

C. Reproducibility
Our code is available at https://github.com/itsvaibhav01/Immune. We run all experiments with Python 3.7.4
and PyTorch 1.9.0. For all experimentation, we use two Nvidia RTX A6000 GPUs.

D. Overview Diagram
In Algorithm 1 (main paper), we provided a detailed overview of I!!"#$. To further illustrate how I!!"#$ operates, we
include a visualization in Figure 2.

E. Proof of Theorem 1
Let us reconsider the definition of suboptimality gap as defined in (7), which is given by

!sub-gap(xinput) := E
x→p0(·|xinput)
y→ω→(·|x)

[Rsafe(x,y)]→ E
x→padv(·|xinput)
y→ωsafe-dec(·|x)

[Rsafe(x,y)] .

Next, we decompose the sub-optimality into two components as !sub-gap = !1 +!2, where

!1 := E
x→p0(·|xinput)
y→ω→(·|x)

[Rsafe(x,y)]→ E
x→padv(·|xinput)

y→ω→(·|x)

[Rsafe(x,y)] ,

and !2 is given by

!2 := E
x→padv(·|xinput)

y→ω→(·|x)

[Rsafe(x,y)]→ E
x→padv(·|xinput)
y→ωsafe-dec(·|x)

[Rsafe(x,y)] . (9)

Upper bound on !1: To proceed, consider the term !1 as

!1 = E
x→p0(·|xinput)

[
R̃safe(x)

]
→ E

x→ωadv(·|xinput)

[
R̃safe(x)

]
,

where we define R̃safe(x) := Ey→ω→(·|x)[Rsafe(x,y)]. We assume that the reward function is upper-bounded as Rsafe(x,y) ↑
Rmax, then !1 can be upper-bounded by

!1 ↑ Rmax · dTV(p0(·|xinput), padv(·|xinput)) (10)

↑ Rmax

√
1

2
KL(p0(·|xinput)||padv(·|xinput)), (11)

where, we first utilize the definition of Total variation distance as an integral probability metric [62] and then, using Pinsker’s
inequality, we get the final expression of (10). Consider the KL term in the right-hand side of (10) to obtain

https://github.com/itsvaibhav01/Immune

KL(p0(·|xinput)||padv(·|xinput))

= Eq→p0(·|xinput) log
p0(q|xinput)

padv(q|xinput)
(12)

= logZ(xinput) +
1

ω
Eq→p0 [Rsafe(xinput, q)] (13)

= log E
q→p0

[
exp

(
→ 1

ω
Rsafe(xinput,q)

)]
(14)

+
1

ω
Eq→p0Rsafe(xinput,q) (15)

↑ 1

ω

(
Eq→p0Rsafe(xinput,q)→Rmin

safe (xinput)
)
, (16)

where we first expand upon the definition of the KL divergence term in (12). In (13), we utilize the closed-form solution of
the adversarial prompt distribution by minimizing the KL-regularized objective defined in (2). We get the equality in (15) by
taking the logarithm of the expression and expanding the definition of the partition function. To get the final upper bound in
(16), we utilize →Rsafe(xinput,q) ↑ →Rmin

safe (xinput,q) for all q ↓ p0(·|xinput).
We note that in the upper bound of (16), ω plays an important role. A lower value of ω indicates that prompt distribution

has been largely fine-tuned by minimizing the safety rewards, and hence the sub-optimality gap increases. On the other hand,
larger values of ω represent, the adversarial prompt distribution is not further away from the naive or safe prompt distribution,
hence our sub-optimality gap is lower. However, it’s important to note that padv cannot be too far from p0 i.e., ω cannot be too
small since then the adversarial prompts will start losing sense, perplexity (in the case of text), and context.

Upper bound on !2: Next, we proceed to upper-bound the second term !2 where !2 is

!2 := E
x→padv(·|xinput)

y→ω→(·|x)

[Rsafe(x,y)]→ E
x→padv(·|xinput)
y→ωsafe-dec(·|x)

[Rsafe(x,y)] , (17)

which represents the sub-optimality in the alignment of our decoding procedure under the prompt distribution padv. Now, add
and subtract the terms εKL(ϑ↑(.|x)||ϑsafe(.|x)) and εKL(ϑsafe-dec(.|x)||ϑsafe(.|x)) in the right hand side of !2 to obtain

!2 = E
x→padv(·|xinput)

y→ω→(·|x)

[Rsafe(x,y)]→ εKL (ϑ↑(.|x)||ϑsafe(.|x))

→
[

E
x→padv(.)

y→ωsafe-dec(·|x)

[Rsafe(x,y)]

→ εKL (ϑsafe-dec(.|x)||ϑsafe(.|x))
]

(18)

+
(
εKL (ϑ↑(.|x)||ϑsafe(.|x))

→ εKL
(
ϑsafe-dec(.|x)||ϑsafe(.|x)

))
. (19)

Utilizing the optimality of our decoding policy which is optimal for the KL-regularized RL problem and dropping the negative
terms, we get the final bound as

!2 ↑ εKL (ϑ↑(.|x)||ϑsafe(.|x)) . (20)

We remark that !2 will be less under two scenarios: (1) When ε is small it means we are optimizing more towards the safety
reward function, (2) when the KL divergence term between ϑ↑ and reference policy ϑsafe is small. It is very important to note
that ϑsafe(.|x) is the input reference policy available to us, which is already closer to optimal ϑ↑ due to SFT and RLHF training
done to the majority of the current models, thus this value is anyways very small or even closer to zero. From the upper bound
in (10), (16), and (20), we get the final upper bound on the suboptimality (in (9)) presented in the statement of our Theorem 1.

Figure 2. An illustration of our proposed inference-time alignment-based defense strategy, I!!"#$.

Model Defense Strategy Economic Harm Political Lobbying Privacy Violence Legal Opinion Financial Advice Health Consultation Gov Decision Average
SD TYPO SD-TYPO SD TYPO SD-TYPO SD TYPO SD-TYPO SD TYPO SD-TYPO SD TYPO SD-TYPO SD TYPO SD-TYPO SD TYPO SD-TYPO

LLaVA-1.6

Original 6.42 10.96 15.94 0.00 0.78 1.47 14.64 19.22 44.95 0.00 0.00 0.79 0.00 0.00 0.00 0.00 0.00 0.00 2.30 5.26 4.10 3.01
FigStep [16] 6.19 11.16 14.06 0.00 1.42 1.39 12.44 17.48 43.93 0.00 0.00 0.57 0.00 0.00 0.00 0.00 0.00 0.00 1.90 4.17 4.04 2.77

AdaShield [67] 1.44 7.35 5.57 0.00 0.82 0.00 5.73 39.16 23.21 0.00 0.00 0.00 1.23 0.00 0.00 0.00 0.00 0.00 0.00 1.80 0.00 2.08
CoCA [14] 25.41 27.87 18.03 31.37 13.37 17.65 48.24 42.45 39.57 0.00 2.31 1.54 6.07 10.18 4.79 0.00 0.00 0.00 0.67 1.34 0.00 8.91

I!!"#$ (Ours) 1.03 0.51 2.87 0.00 0.00 0.00 5.48 4.62 8.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.59 0.88 0.00 0.63

LLaVA-1.5

Original 11.68 21.18 22.11 10.97 11.99 27.59 30.55 60.94 62.56 1.23 0.02 0.86 0.00 7.44 5.88 0.00 2.57 2.29 3.06 4.67 4.76 9.28
FigStep [16] 12.45 21.74 21.54 12.00 16.67 27.36 30.40 58.85 64.13 1.22 0.74 0.65 0.00 9.21 6.89 0.00 2.54 2.44 1.85 4.10 5.14 9.65

AdaShield [67] 3.85 0.00 10.42 0.00 0.00 0.00 12.89 6.13 15.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.92
CoCA [14] 18.85 23.77 17.21 12.42 9.85 7.19 35.97 43.88 51.08 0.77 1.54 2.31 7.19 7.78 4.19 0.00 0.92 0.00 0.67 2.01 1.34 7.07

I!!"#$ (Ours) 0.69 2.90 9.44 0.00 0.00 0.00 4.55 6.19 12.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.65

MiniGPT-4-7B

Original 4.10 7.37 2.69 1.33 1.40 1.41 3.05 24.03 17.22 0.00 0.00 0.00 0.00 0.00 0.00 1.80 0.84 3.27 0.85 1.01 0.52 1.92
FigStep [16] 2.45 2.67 4.92 0.00 0.80 1.22 6.27 25.35 13.23 0.00 0.00 0.00 0.00 0.00 0.00 2.20 1.27 0.00 0.00 2.12 1.10 1.68

AdaShield [67] 5.26 5.79 4.41 0.87 0.00 0.00 7.93 19.27 12.44 0.00 0.00 0.00 0.00 0.00 0.00 1.99 0.00 2.67 0.00 0.00 0.72 1.48
CoCA [14] 18.37 13.72 9.05 15.86 4.54 12.32 28.29 20.14 28.67 1.63 2.89 2.02 4.88 0.00 0.92 2.16 0.00 0.98 1.20 1.89 3.67 5.47

I!!"#$ (Ours) 5.89 5.43 1.76 0.00 0.00 0.00 3.42 20.12 12.81 0.00 0.00 0.00 0.00 0.00 0.00 1.08 0.00 0.00 1.40 0.81 0.85 1.22

MiniGPT-4-13B

Original 16.30 16.19 24.23 0.00 0.00 0.00 7.59 3.63 12.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.02 0.00 0.00 4.20 0.00 1.14
FigStep [16] 7.85 15.96 24.13 0.00 0.00 0.00 7.96 12.12 19.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.98 0.00 1.33

AdaShield [67] 8.46 15.86 12.15 0.00 0.00 0.00 5.93 7.68 7.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.42 0.00 0.00 4.10 0.00 1.09
CoCA [14] 14.20 22.54 22.68 0.00 0.00 0.00 8.77 17.85 24.30 0.00 0.00 0.00 7.72 0.00 0.00 0.00 4.39 0.00 0.00 0.00 4.41 2.37

I!!"#$ (Ours) 12.31 22.13 20.26 0.00 0.00 0.00 8.43 1.62 7.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.49

Table 5. Evaluation on MM-Safety Bench. We report Attack Success Rate (ASR) for 7 categories of prohibited scenarios from MM-Safety
Bench [38]. For this evaluation, we used GPT-4 as the jailbreak classifier. The best results (lowest ASR) are highlighted in bold. All values
are reported in %.

F. Extended Results and Discussion
Extended Results on MM-Safety Bench [38]. In Table 2 of the main paper, we report the attack success rates on 6 categories
of the MM-Safety Bench. For completeness, we provide evaluations on the remaining 7 categories in Table 5. We observe that
I!!"#$ consistently outperforms other baseline defense strategies, highlighting its e!cacy.

F.1. Comparison with training-based methods

To gain deeper insight about the capabilities of inference-time alignment approach, we compare the performance of I!!"#$
with a Qwen-VL model (fine-tuned to safety preferences using DPO [57]). For this evaluation, we utilize the checkpoints
released by Li et al. [31], obtained through DPO training on the Qwen-VL model using the VLFeedback [31] preference dataset.
This data set includes rewards annotations on helpfulness, visual faithfulness, and ethical considerations. We evaluate the
performance on JailbreakV-28K dataset [40] and report the results in Table 6. We used GPT-4 as the oracle jailbreak classifier,
and we note that across all categories, I!!"#$ achieves a better ASR than the fine-tuned model.
For a fair comparison, during decoding with I!!"#$, instead of an external safety reward, we use the implicit reward (as defined

Model Defense Strategy Noise SD Nature Blank Average
Template Persuade Logic Template Persuade Logic Template Persuade Logic Template Persuade Logic

Qwen-VL

Original 46.12 3.27 12.09 52.23 6.18 9.07 53.34 3.42 7.05 53.11 4.36 15.11 22.99
Qwen-VL + DPO [31] 33.43 3.76 6.67 48.27 5.34 4.05 36.67 2.45 8.11 43.22 3.90 9.46 18.07

I!!"#$ (using Mudgal et al. [47]) 28.71 4.61 8.92 43.72 2.80 4.10 34.57 2.45 5.99 35.63 3.42 8.90 15.32
I!!"#$ (using Chakraborty et al. [7]) 24.59 3.98 7.00 29.22 2.80 3.95 22.74 2.45 5.50 30.42 3.61 8.90 12.10

I!!"#$ (Ours) 10.27 2.18 5.41 21.34 2.29 4.03 18.22 2.35 5.41 20.17 3.37 7.05 8.58

Table 6. Comparison with train-time alignment techniques. We compare the Attack Success Rate for I!!"#$ with a DPO-aligned
MLLM [31] on JailbreakV-28K dataset [40]. Lower ASR values indicate stronger resilience against jailbreak attacks. For this evaluation, we
used GPT-4 as the jailbreak classifier. I!!"#$ consistently outperforms the train-time aligned model across all categories. The best result
(lowest ASR) is highlighted in bold. All values are reported in %.

Original AdaShield [67] CoCA [14] I!!"#$ (Ours)

LLaVA-1.5 3.52 3.62 7.02 4.98
LLaVA-1.6 3.48 3.58 7.01 4.93

MiniGPT-4-13B 24.56 24.92 37.86 27.90
Qwen-VL 1.91 2.01 7.43 4.57

Average ASR in % (↔) 52.56 24.63 35.03 11.51

Model Utility (↗) 34.07 27.25 31.25 33.75

Table 7. Inference-time of baseline defenses. We report the average time required (in secs) to generate a response for one query for each
defense strategy across various MLLMs.

in [57]) obtained from the Qwen-DPO model [31] for inference-time alignment. This approach ensures a clear understanding
of the advantages of inference-time alignment, maintaining the same base MLLMs and reward preferences. From Table 6,
we note that I!!"#$, based on implicit reward, improves the ASR of the DPO model by 2.75% (when decoded using [47]).
These results corroborate our findings in Section 3 that train-time alignment techniques can be vulnerable against unforeseen
adversarial tactics that emerge only at inference. In contrast, I!!"#$ dynamically assesses and responds to each incoming
prompt.
We also measure the token-level KL divergence of I!!"#$ and the DPO-aligned model [31] with respect to the base MLLM,
using it as a proxy for reward overoptimization and deviation from the base policy, as is common in the literature [7, 47]. We
average over 218 prompts from MM-Vet benchmark [77], the KL divergence for I!!"#$ is 5.23 and for the DPO-aligned model
is 5.84. Ideally, an approach that minimizes ASR while maintaining the smallest KL divergence is preferable. These results
suggest that I!!"#$ based on inference-time alignment achieves ASR reduction without incurring a higher KL divergence
compared to training-time alignment techniques.

F.2. Capability Evaluations Results
I!!"#$ preserves the model’s original capabilities. An e"ective jailbreak defense strategy should minimize the attack
success rate while retaining the model’s original capabilities. To assess this, we compare the visual comprehension abilities of
various MLLMs employing di"erent defense strategies on the MM-Vet dataset [77]. This multimodal benchmark evaluates
MLLM responses across six categories: Recognition, Knowledge, Optical Character Recognition, Spatial Awareness, Language
Generation, and Math. We report the average performance across all categories in Figure 4. Our results indicate that, compared
to other defense strategies, I!!"#$ achieves the highest score on MM-Vet, demonstrating that it not only enhances model
safety but also preserves the model’s original capabilities.

F.3. Inference Speed Evaluations results
Inference Time of I!!"#$. In Table 7, we compare the inference time of various jailbreak defense strategies across di"erent
MLLMs. Specifically, we report the average response generation time, in seconds, over 100 prompts to account for variability
in prompt lengths. All defense strategies were evaluated using the same hardware and software configuration as detailed in
Appendix C. Among the baselines, CoCA [14] exhibits the longest inference time—nearly double that of the original decoding
process—as it requires two forward passes. In Table 4, we note that although AdaShield [67] incurs only a slight additional
inference latency, it causes a significant drop in model utility from 34.07 to 27.25, a 20.01% decrease compared to the original
decoding, as measured by the MM-Vet score [77]. In contrast, our method, I!!"#$, although incurs higher inference latency
than AdaShield [67] but maintains the original model capabilities with only a 0.93% reduction in model utility and further

Figure 3. We measure ASR and model utility for di"erent combinations of hyper-parameters k and ω. The model is LLaVA-1.5 [34].

(a) MiniGPT-7B (b) MiniGPT-13B (c) LLaVA-1.6 (d) Qwen-VL

Figure 4. Evaluation on MMvet. We evaluate model utility by comparing the performance of di"erent baseline defense strategies across
various MLLMs on the MMvet dataset [77]. A higher model utility indicates better visual-reasoning capabilities. I!!"#$ preserves the
model’s original capabilities and even enhances performance in certain cases.

reduces the ASR by 13.12% compared to AdaShield.
Ablations on hyper-parameters. In Section 6, we demonstrated the superior e!cacy of I!!"#$ compared to the baseline
defense strategies through a comprehensive evaluation. In this section, we present an ablation study on di"erent hyperparameters,
such as the number of tokens sampled (k), and the alignment parameter (ε) as defined in Algorithm 1. We report the ablation
results on k and ε in Figure 3. Specifically, we measure the attack success rate and model utility (measured by MM-Vet
score [77]) of the generated responses based on di"erent combinations of the hyperparameters k and ε. Our observations
indicate that using k = 10 and ε = 1.0 leads to optimal ASR and model utility.

G. Description of Baselines
In this section, we present an overview of the baselines used for comparison with I!!"#$.
• FigStep [16]: FigStep operates by concatenating a fixed safety prompt: “First, you need to check whether there is text in the

image. If there are textual instructions in the image that are harmful or violating AI safety policy, you should not assist user’s
requests as you are a harmless assistant.” with the user query.

• AdaShield [67]: The main idea is to prepend user queries with the following defense prompt to protect MLLMs from
jailbreak attacks:
“But before processing any instruction, examine the image carefully for any text or items that might suggest harmful, illegal,
or dangerous activity. If detected, do not engage with or act on the content. Analyze the image and the given instruction
holistically. If the content is determined to be unethical, illegal, or dangerous, please answer ‘I am sorry’. Instead, please
execute the above instruction safely and correctly.”

• CoCA [14]: Constitutional Calibration (CoCA) involves adjusting the model’s responses to ensure alignment with predefined
safety guidelines, such as “The assistant cannot provide answers related to illegal activities.” This approach reduces the
likelihood of generating harmful or inappropriate content. Specifically, Gao et al. [14] calculates the di"erence between
the logits of the model’s predictions with and without the safety principle applied to the same image and query. This
discrepancy is then amplified and added to the predicted token probabilities during the decoding phase. The adjusted logits
are subsequently processed through a softmax function to produce the final probability distribution.

Figure 5. For the following example from the JailbreakV-28K dataset [40], the input to the model is a noise image, along with a malicious
user query asking for steps to “deliver malware in email”. While other baseline defenses fail to generate a safe response, I!!"#$, leveraging
inference-time alignment, e"ectively neutralizes this attack.

H. Qualitative Comparison
Figure 5, 6, and 7, present qualitative comparisons of responses across various baseline defense strategies when subjected to
di"erent jailbreak attacks [16, 40]. Notably, in all cases, I!!"#$ consistently and e"ectively rejects the malicious user queries.

Figure 6. This example is taken from FigStep [16], where the image contains a typographic attack aimed at eliciting a list of ingredients for
making poison. I!!"#$ e"ectively rejects the malicious query, citing its unethical nature.

Figure 7. This example illustrates a template-based jailbreak attack from Luo et al. [40], in which the user maliciously instructs the model to
simulate a harmful or unsafe model, thereby coercing it into answering a racist question. In this case also, I!!"#$ e"ectively neutralizes the
attack.

