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1. Sampling scheme
In this section, we provide more detailed information on the
particular sampling schemes we utilized for our Suni, Svar,
and Sbaseline functions in the main paper.
Baseline. We refer to the given original images, without any
pre-processing, as ”baseline” or ”full resolution,” utilizing
100% of the available pixel budget. The FOV spanned by
the original image pixels is referred to as the ”full FOV.”
The function Sbaseline is then defined as sampling all pixels
(the final image remains unchanged):

Sbaseline(x, y) = 1, ∀, x = 1, . . . ,W ; , y = 1, . . . ,H.
(1)

Variable sampling (Foveation). The sampling approach
follows Poggio et al. [21] (see also [5, 24]), which modeled
the human representation of visual information in the retina
and the visual cortex. The variable resolution scheme (see
SFigure 1) consists of sampling with a receptive field size
that increases with eccentricity (distance from the fixation
point). We apply a Log-Polar transformation to each image,
where sample density remains constant ∀θ ∈ [0, 2π] and
decreases linearly with r:

(r, θ) = (log(
√
(x− xf )2 + (y − yf )2), arctan(

y − yf
x− xf

))

(2)
where xf , yf are the coordinates of the fixation point. The
sampling scheme selects a fixed number of samples, N ,
distributed across the image. The sample positions are de-
termined by defining concentric annuli around the fixation
point, each containing a predefined number of samples pro-
portional to its area. The area decreases linearly with r,
which is akin to the increasing receptive field sizes in the
human retina [5, 21, 24].

For the 3% sampling density, this results in roughly
Nvar = 10K pixel samples falling within the FOV of an
image with size 600 × 400 (quite typical for the COCO
[18], GQA [12] etc.). We refer to this as a 3% sampling
density, equivalent to a 33x image down-scaling factor, with
the number of samples increasing proportionally for smaller
down-scaling factors.
Uniform sampling. Pixels are sampled uniformly across
the image to achieve a total of N samples. The sam-
pling map, Suni, is generated by dividing the image into a
log-polar grid, again using Equation 2, but here the con-
centric annuli maintain a constant area with the condition
N = Nvar. This creates even distribution of samples across
the entire image while ensuring information matching be-
tween the images (see main paper ”Information-matched

images” section). The Suni function is akin to simply down-
scaling an image (losing information) and then up-scaling
it back again using an interpolation algorithm (e.g., bilinear
interpolation). Formally:

W∑
x=1

H∑
y=1

Suni(x, y) = Nvar. (3)

1.1. Image reconstruction
For each sampling map S ∈ {Svar, Suni} and original image
I : W ×H → {0, ...256}3, the sampled image is:

Isampled(x, y) = S(x, y) · I(x, y). (4)

We reconstruct the full-resolution image Î using an interpo-
lation function I (e.g., bilinear interpolation):

Î = I(Isampled). (5)

1.2. Code
We provide the code for generating the final images from
our sampling maps in the Supplementary code on the web-
site: https://seeingmorewithless.github.io/.
To understand the representational changes induced by vari-
able sampling, it is essential to examine the underlying ar-
chitectures of the models in question. We focus on two pri-
mary architectures from existing literature: DETR [4] and
its extension, MDETR [14].

https://seeingmorewithless.github.io/
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SFigure 1. Sampling and interpolation schemes. (a,b,c) Variable resolution sampling scheme with peak sample density at the center of
fixation and linearly decreasing number of samples with eccentricity. The samples have non-overlapping receptive fields (spatial support)
at the center of fixation (aka. ’foveola’), supporting a single pixel each. Outside the center, the receptive fields are overlapping and linearly
increasing with eccentricity towards the periphery [5, 21, 24]. (d,e,f) Uniform resolution sampling scheme with a constant density of
samples. Both schemes distribute an equal number of samples over the entire field of view (FOV) using log-polar coordinates. In this
work, we interpolate filtered images from the sampled images, by applying a Gaussian filter around each sample with a standard deviation
equal to the sample’s receptive field radius.



2. Architectures

Studying the representations learned in large foundation
models (such as BLIP2 [16], LLaVa [19], InstructBLIP [6])
in the context of our study requires complete re-training
from scratch on sampling-scheme pre-processed versions
of each dataset used in the models. Simply fine-tuning
those models is not enough in our case, as we modify the
input images fundamentally from the present paradigm.
The base-level visual features extracted by training with
uniform-resolution images, as is commonly done in the
community and in CLIP [23] which the above models
inherit from, would not be representative of the internal
adaptations that occur during learning with variable sam-
pled images.

Given that CLIP [23] was trained on 400 million image-text
pairs for roughly 20 days on 592 V100 GPUs, the task of
complete re-training has become largely inaccessible to the
scientific community. As such, we decided to train from
scratch only DETR (object detection model), and fine-tune
MDETR among our VLMs. We study the impact of vari-
able sampling on the learned representations of DETR and
in this section, we establish its relation to MDETR. This is
important context for how our study relates to the represen-
tations on the VQA task.

2.1. DETR Architecture
We begin by revisiting the architectures. DETR (DEtection
TRansformer) introduces a novel approach to object detec-
tion by leveraging transformer-based architectures. As de-
picted in SFigure 2, the model consists of three main com-
ponents:
1. Backbone: A convolutional neural network (CNN) ex-

tracts feature maps from the input image.
2. Transformer Encoder-Decoder: The encoder pro-

cesses the flattened feature maps with positional encod-
ings, while the decoder generates a fixed set of object
queries that attend to the encoder’s output.

3. Prediction Heads: Each decoder output embedding is
passed through a feed-forward network (FFN) to predict
bounding box coordinates and class labels.

DETR employs a set-based bipartite matching loss to facil-
itate end-to-end training without the need for anchor boxes
or non-maximum suppression, enabling direct prediction of
object sets.

2.2. MDETR Architecture
MDETR (Modular DEtection TRansformer) [14] extends
DETR to multimodal tasks by incorporating textual in-
puts, enabling the model to perform visual question answer-
ing (VQA) and referring expression comprehension (SFig-
ure 3). The main components are:

1. Multimodal Input Encoding. MDETR encodes the im-
age using a CNN backbone, similar to DETR, resulting
in visual features. The text (e.g., a question or refer-
ring expression) is encoded using a pre-trained language
model (e.g., RoBERTa) to obtain textual feature embed-
dings. Both visual and textual features are projected into
a shared embedding space.

2. Cross-Modal Transformer Encoder. The projected vi-
sual and textual features are concatenated to form a sin-
gle sequence and passed through a transformer encoder.
This cross-modal encoder uses self-attention to model
interactions between visual and textual tokens, allowing
the model to align textual references with visual content.

3. Transformer Decoder. Similar to DETR, MDETR uses
a transformer decoder with object queries. The decoder
cross-attends to the outputs of the cross-modal encoder,
enabling it to integrate information from both modalities.
The decoder outputs are used to predict bounding boxes
corresponding to objects referred to in the text.

4. Output Heads and Loss Functions. In addition to
bounding box regression and classification, MDETR
employs specialized loss functions for multimodal align-
ment, such as the soft token prediction loss and con-
trastive alignment loss.

2.3. Representational similarity
Despite being designed for different tasks, DETR and
MDETR share a common architectural foundation centered
around transformer-based encoder-decoder mechanisms
that process visual features extracted by a CNN backbone.
Both models process visual features through an encoder,
which is the main component of our analysis. In our setup,
both models also use the same CNN backbone (ResNet101
[10]), trained from scratch, on which we also conduct the
”Neuronal specialization” experiment from the main paper
(Section ”Human-like representations”, point II.).

By training the DETR model on the semantically rich task
of object detection (involving segmentation masks, cap-
tions, locations, bounding boxes etc.) we aim to address
from the perspective of vision what adaptations occur un-
der variable sampling during complex visual tasks. We re-
fer the reader to the main paper for our analysis, Section
”Human-like representations”.
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Fig. 2: DETR uses a conventional CNN backbone to learn a 2D representation of an
input image. The model flattens it and supplements it with a positional encoding before
passing it into a transformer encoder. A transformer decoder then takes as input a
small fixed number of learned positional embeddings, which we call object queries, and
additionally attends to the encoder output. We pass each output embedding of the
decoder to a shared feed forward network (FFN) that predicts either a detection (class
and bounding box) or a “no object” class.

Transformer decoder. The decoder follows the standard architecture of the
transformer, transforming N embeddings of size d using multi-headed self- and
encoder-decoder attention mechanisms. The difference with the original trans-
former is that our model decodes the N objects in parallel at each decoder layer,
while Vaswani et al. [47] use an autoregressive model that predicts the output
sequence one element at a time. We refer the reader unfamiliar with the concepts
to the supplementary material. Since the decoder is also permutation-invariant,
the N input embeddings must be different to produce different results. These in-
put embeddings are learnt positional encodings that we refer to as object queries,
and similarly to the encoder, we add them to the input of each attention layer.
The N object queries are transformed into an output embedding by the decoder.
They are then independently decoded into box coordinates and class labels by
a feed forward network (described in the next subsection), resulting N final
predictions. Using self- and encoder-decoder attention over these embeddings,
the model globally reasons about all objects together using pair-wise relations
between them, while being able to use the whole image as context.

Prediction feed-forward networks (FFNs). The final prediction is com-
puted by a 3-layer perceptron with ReLU activation function and hidden dimen-
sion d, and a linear projection layer. The FFN predicts the normalized center
coordinates, height and width of the box w.r.t. the input image, and the lin-
ear layer predicts the class label using a softmax function. Since we predict a
fixed-size set of N bounding boxes, where N is usually much larger than the
actual number of objects of interest in an image, an additional special class la-
bel ∅ is used to represent that no object is detected within a slot. This class
plays a similar role to the “background” class in the standard object detection
approaches.

Auxiliary decoding losses. We found helpful to use auxiliary losses [1] in
decoder during training, especially to help the model output the correct number

SFigure 2. DETR architecture. Illustration adapted from [4]. DETR architecture consisting of; (1) CNN-backbone; (2) transformer
encoder-decoder; (3) feed-forward network (FFN).

Figure 4: During MDETR pre-training, the model is trained to detect all objects mentioned in the question. To extend it for question
answering, we provide QA specific queries in addition to the object queries as input to the transformer decoder. We use specialized heads
for different question types.

Figure 5: MDETR provides interpretable predictions as seen here.
For the question “What is on the table?”, MDETR fine-tuned on
GQA predicts boxes for key words in the question, and is able to
provide the correct answer as “laptop”. Image from COCO val set.

trained MDETR model. Unlike CLIP, we do not ensure our
pre-training dataset contains a balanced representation of all
the target classes. By construction, our dataset has no train-
ing instances where there are zero boxes aligned to the text,
biasing the model to always predict boxes for a given text.
This prevents evaluating in a true zero-shot transfer setting,
so we turn instead to a few-shot setting, where the model
is trained on a fraction of the available labelled data. We
conduct our experiments on the LVIS dataset [11], a detec-
tion dataset with a large vocabulary of 1.2k categories, with
a long-tail that contains very few training samples, making
it a challenging dataset for current approaches. Federated
datasets often pose problems to standard detectors, and re-
quire developing specific loss functions [56]. However this

Method Data AP AP50 APr APc APf

Mask R-CNN 100% 33.3 51.1 26.3 34.0 33.9
DETR 1% 4.2 7.0 1.9 1.1 7.3
DETR 10% 13.7 21.7 4.1 13.2 15.9
DETR 100% 17.8 27.5 3.2 12.9 24.8

MDETR 1% 16.7 25.8 11.2 14.6 19.5
MDETR 10% 24.2 38.0 20.9 24.9 24.3
MDETR 100% 22.5 35.2 7.4 22.7 25.0

Table 6: Box AP fixed results on LVIS-v1. Since the validation
set of LVIS contains some training images from MSCOCO, we re-
port results on the subset of 5k validation images that our model
has never seen during training. We call this subset minival. All
models use a Resnet 101 as backbone. Mask-RCNN can be re-
garded as a strong representative of the detection performance of
current approaches on this dataset, using bells and whistles such
as Repeat Factor Sampling (RFS) to address class imbalance. We
use a vanilla DETR pretrained on MSCOCO as a few-shot transfer
baseline, and show that our pre-training on natural text improves
performance significantly, especially on rare categories.

property makes it well suited to train MDETR: for each pos-
itive category, we create a training instance composed of the
image and a text version of the class name, and provide as
annotations all the instances of this category. For each neg-
ative category, we provide the class name and an empty set
of annotations. For inference on a given image, we query
each possible class name, then merge the sets of boxes de-
tected on each of the text prompts. This inference scheme
costs about 10s/image on a GPU.

We fine-tune MDETR on three subsets of the LVIS train
set, each containing respectively 1%, 10% and 100% of
the images. We ensure a balanced sampling of the cate-

2D positional 
embedding

SFigure 3. MDETR architecture. Illustration adapted from [14]. The architecture consists of: (1) a CNN backbone for visual feature ex-
traction and a pre-trained language encoder; (2)(3) a transformer encoder-decoder for cross-modal interaction and object query processing;
and (4) output heads for multimodal alignment (FFN).

3. VQA
Here we provide additional results on the effects of fixation
point location. We observe that shifts cause negligible dif-
ferences in performance (STable 1).

3.1. Qualitative evaluation
While our evaluation focuses on quantitative analysis, it is
important to recognize the limitations of only using sum-
mary statistics. A major concern is the validity of bench-
marks [17] — it is always questionable if a benchmark re-
ally measures what it claims to, especially as we find “short-
cuts” that machine learning models tend to use [9, 22]. In
effort to partially address this issue, we provide a qualitative
evaluation of several models on the VQA task — showing
examples both in favor of variable and in favor of uniform
sampling (SFigure 4).

3.2. Detailed VQA results
We provide detailed results on the VQA task for all our
models at the 3% density (STable 2, 3, 4, 5, 6).



STable 1. Performance accuracy comparison between a variable central fixation (column ”Variable”) and corner fixations across different
models and datasets, compared to uniform sampling (column ”Uniform”). Results at 3% density. We define a corner fixation as in the
main paper, 100 pixels away from the center along the given diagonal (TR: top-right, TL: top-left, BR: bottom-right, BL: bottom-left). We
report the standard deviation of accuracy across the center and the different fixations (column ”Variable Std.”).

Model #Total Params Dataset Variable Variable Std. Uniform

MDETR-ResNet101-RoBERTa [14] 169M GQA [12] 46.79% ±0.01% 44.13%
BLIP-2-FlanT5XL [16] 3.4B GQA 42.27% ±0.21% 40.72%
BLIP-2-FlanT5XL 3.4B VQAv2 [8] 57.89% ±0.46% 56.19%
InstructBLIP-FlanT5XL [6] 4B VQAv2 66.37% ±0.56% 66.48%
ViLT-B/32 [15] 87.4M VQAv2 64.90% ±0.82% 63.01%
LLaVa-v1.5 [19] 13B VQAv2 65.91% ±0.75% 65.14%

(a) What is the person doing in the air?

GT: snowboarding Pred: snowboarding Pred: flying

(b) Where are the people?

GT: train station Pred: train station Pred: outside

(c) What type of animal is in the field?

GT: zebra Pred: zebra Pred: cow

(d) Where do these animals live?

GT: zoo Pred: zoo Pred: africa

(e) What is the man holding?

GT: frisbee Pred: frisbee Pred: nothing

(f) How many monitors are there?

GT: 3 Pred: 2 Pred: 3

(g) What room is this a picture of?

GT: bathroom Pred: bathroom Pred: living room

(h) What number of brown horses are there?

GT: 1 Pred: 2 Pred: 2

SFigure 4. VQA examples from LLaVa-v1.5 [19] and ViLT [15] on VQAv2 [8] at 3% density. Variable (mid), Uniform (right). (a,b,c,d,e,g)
Examples of fine details (imperfectly placed, b) yielding correct results. (f) Example where the variable scheme struggles with very
peripheral objects (main paper, Section 3.2(1)). (h) Where both schemes fail due to insufficient resolution at critical regions.



STable 2. ViLT [15] on VQAv2[8]

Model Question Type Baseline Variable Uniform

Pretrained Other 75.57% 56.51% 54.16%
Number 64.10% 43.62% 41.76%
Yes/No 95.74% 83.42% 82.05%
Total 81.64% 64.93% 63.01%

STable 3. BLIP2 [16] on VQAv2 [8]

Model Question Type Baseline Variable Uniform

Pretrained Yes/No 84.27% 80.46% 79.69%
Number 40.97% 36.02% 33.81%
Other 52.90% 46.50% 44.23%
Total 63.12% 57.89% 56.19%

STable 4. LLaVa [19] on VQAv2 [8]

Model Question Type Baseline Variable Uniform

Pretrained Yes/No 92.81% 85.15% 84.66%
Number 61.32% 44.52% 43.92%
Other 71.71% 56.95% 55.91%
Total 78.27% 65.91% 65.14%

STable 5. InstructBLIP [6] on VQAv2 [8]

Model Question Type Baseline Variable Uniform

Pretrained Yes/No 90.14% 85.41% 85.60%
Number 54.62% 46.16% 47.06%
Other 65.82% 57.24% 57.07%
Total 73.49% 66.37% 66.48%

STable 6. MDETR [14] model evaluation on GQA-testdev [12]

Baseline Variable Uniform
Model Question Type Accuracy Accuracy Accuracy

Pretrained (1) Object existence 95.6% 90.1% 89.9%
(2) Object attribute 71.2% 58.2% 57.6%
(3) Object category 76.0% 65.8% 61.3%
(4) Object relation 53.1% 37.5% 34.2%
(5) Global scene 95.8% 94.2% 93.3%
Total 61.7% 46.8% 44.1%

Fine-
tuned

(1) Object existence 95.6% 93.8% 93.4%

(2) Object attribute 71.2% 62.6% 62.6%
(3) Object category 76.0% 71.1% 70.3%
(4) Object relation 53.1% 46.5% 44.9%
(5) Global scene 95.8% 95.2% 95.7%
Total 61.7% 54.3% 53.3%



4. Object detection

STable 7 was referred to in the main paper in the Counting
samples (2) experiment. It shows the performance of
object detection models when evaluated to detect objects
encompassed by an equal number of samples (see Fig-
ure 1a,d). That is, a subset of COCO containing only
information-matched objects (as computed by the segmen-
tation mask overlaid onto the sampling map) was used in
this evaluation. This subset contains mostly peripheral ob-
jects, since in order to achieve an equality of samples with
the uniform scheme, the objects should clearly fall quite far
from the center of the fixation point (which has a very high
sampling density). This is, in a sense, the most ”sterile”
setting for studying the effects of variable sampling; it fully
excludes the effects of language, fixation point location, etc.

STable 7. Sample-equalised evaluation. Segmentation Average
Recall (AR, IoU=0.50:0.95) measured only for objects covering an
equal number of samples with both variable and uniform sampling
schemes. The subscripts S, M, L correspond to performance on
small, medium, and larger objects.

Model Sampling AR ARS ARM ARL

DETR-R101 Baseline 54.8 15.3 51.9 72.0

DETR-R101 Uniform 37.1 1.2 28.0 51.6
DETR-R101 Variable 38.5 2.1 31.0 54.7

Mask RCNN-R101 Baseline 52.5 25.6 49.7 64.2

Mask RCNN-R101 Uniform 34.7 1.6 27.7 48.2
Mask RCNN-R101 Variable 36.9 3.4 31.7 48.6

SFigure 5 qualitatively compares detection results of the
DETR object detector between the variable and uniform
sampling schemes, including object category, bounding
box and instance segmentation.

SFigure 6 shows additional detection results of the DETR
object detector for input images at baseline, uniform and
variable resolutions. Self-attention maps at four locations
around the boundaries of each image, show the different at-
tention patterns in the model for each sampling scheme (see
main paper Section ”Human-like representations” (I) for an
explanation of those maps).

5. Human-like representations

II. Single model generalizes to detect multi-resolution
spanning objects by allowing resolution-specialization in
CNNs. In the main paper, we hypothesized that a network

trained with variable resolution input will keep some sep-
aration between the neurons it dedicates to specific resolu-
tions, even for single object instances. Whether this occurs
is not a trivial question, since it is entirely possible that the
neurons of the network have learned the average resolution
in our training set only: producing high dot-products (acti-
vations) for mid-resolution occupying object segments and
low everywhere else.

Here we provide details on the experimental setup
around this claim. To test our hypothesis, we fed the
variable-resolution trained ResNet101 [10] (backbone of
MDETR, DETR, and MaskRCNN [4, 11, 14]) images
of Type 0 and Type 1 resolution (SFigure 7b,7c). Both
of those resolutions are from the spectrum contained in
the original training images, but the latter (Type 0 res-
olution) has its fixation shifted away from the center.
As such, both images represent the same central crop,
but in low variable resolution (Type 0), and high vari-
able resolution (Type 1). We inferred 2,500 Type 0 and
2,500 Type 1 images (splitting the COCO validation set
in two) to MaskRCNN. We extracted the feature map ten-
sors produced by a deep layer in the ResNet101 backbone
(backbone.body.layer3.block22.batchnorm3), which re-
sulted in two sets of 2,500 tensors, with size varying from
1024 × 50 × 50 to 1024 × 70 × 70, depending on the size
of the inferred image. For each 2D sub-matrix in the tensor
(1,024 sub-matrices in total), we took the average, median
and maximum of the neuronal (kernel) activation. Those
metrics serve as descriptive statistics for our following ex-
perimentation and reduce our datasets to two sets of 2, 500
tensors, each of which has dimension 1024× 3× 1.

Given a sample of total 5, 000 tensors (each with size
1024×3×1), generated by the two different types of source
images (Type 1 and Type 0 resolution), we want to estab-
lish whether there’s a statistically significant difference be-
tween the activation pattern of the neurons solely depend-
ing on the resolution type. In the setting of this experiment,
we have ensured that all other factors have been kept the
same in the generation of the tensors (same object distribu-
tion between the groups etc). Formally, let X1, . . . , X2,500,
Y1, . . . , Y2,500 be independent, random vectors of real num-
bers, representing our tensors. We have Xi ∼ P0 and
Yi ∼ P1, with P0, P1 probability distributions. The hy-
pothesis test is then reduced to:

H0 : P0 = P1 vs. H1 : P0 ̸= P1 (6)

Most two-sample tests assume some extent of normality.
Lacking further information on the inner machinery of
the training process and the distribution of kernel popula-
tions, we must establish a non-parametric, general approach
where minimal assumptions are made about the tensor gen-
eration process. Many non-parametric models, however,
such as kernel density estimation, are not typically feasible



(a) (b) (c)

SFigure 5. Detection examples of the DETR model. We see in several instances that the variable resolution model benefits from the
texture of an object, critical for determining its class correctly. (a) Full-resolution image. (b) Uniform sampling scheme. (c) Variable
sampling scheme.

SFigure 6. Additional interpretability and detection examples in DETR model. Top to bottom: Baseline (full), uniform and variable
resolution.



(a) CNN training image (b) Type 1 resolution (c) Type 0 resolution

SFigure 7. Shifted fixation points. Example of cropped images around the center, with center fixation and shifted fixation.

in high-dimensional settings [1]. Consequently, we need a
model that doesn’t require an intermediate density estima-
tion to avoid the curse of dimensionality. We use a classifi-
cation model as a proxy for a two-sample test.

Classification. Let P0,P1 be two distinct probability dis-
tributions. Let C a classifier model. C is a simple function
from the set of all possible tensor samples taken from P0,
P1 to {0,1}, indicating whether the sample belongs to P0

or P1. We can denote the function as C : X → {0, 1},
representing a logistic-regression classifier (fit on at most
1, 024× 3× 1 = 3, 072 variables, not considering regular-
ization).

Two-sample test based on classification accuracy.
Classification-based approaches have been proposed for
two-sample testing on high-dimensional, complex data. [2,
3, 7, 13, 20]. If a classification model can sufficiently dis-
criminate between samples from two populations, it’s rea-
sonable to assume that the underlying data generation pro-
cesses are different. Consequently, the accuracy of a clas-
sification model (preferably, if not imperatively, over out-
of-sample data) must be a constituent of the test statistic.
[13, 20] discuss the consistency and power of a classifier-
based test compared to the minimax power, [3] proposes an
estimation of the likelihood ratio by the odds ratio of the
classification probability, and [7] uses the score assigned to
each datapoint by the classifier to reduce the dimensions
and run a single-dimensional two-sample test.
Notation. We first introduce the notation necessary to
study the classifier’s accuracy. Let X = {Xi}n0

i=1 and
Y = {Yi}n1

i=1 be independent random vectors representing
our tensors, drawn from probability distributions P0 and P1,
respectively. These correspond to Type 0 and Type 1 ten-
sors. We split the data into training and test sets: Xtrain,
Ytrain for training, and Xtest, Ytest for testing, with sizes tr0,
tr1, te0, and te1, respectively, such that n0 = tr0 + te0 and
n1 = tr1+te1. X and Y contain Type 0 and Type 1 tensors,
respectively (each tensor Xi, Yi of size 1024× 3× 1).

We train a classifier C on the training samples Xtrain and
Ytrain. We then evaluate the classifier on the test samples
Xtest and Ytest to estimate the accuracies:

α̂0 ≡ 1

te0

te0∑
i=1

1 (C(Xi) = 0) , α̂1 ≡ 1

te1

te1∑
i=1

1 (C(Yi) = 1) .

(7)
Here, α̂0 is the proportion of correctly classified samples

from P0, and α̂1 is the proportion of correctly classified
samples from P1. These sample proportions are unbiased
estimators of the expected accuracies α0 and α1, defined
as:

α0 = EX∼P0
[1(C(X) = 0)], α1 = EY∼P1

[1(C(Y ) = 1)].
(8)

Under the null hypothesis H0 : P0 = P1, and assuming no
predictive power, we have α0 = α1 = 0.5. As the sample
sizes te0 and te1 increase, the estimators α̂0 and α̂1 con-
verge to their expected values α0 and α1 by the law of large
numbers. The overall test accuracy is then:

α̂∗ ≡ te0α̂0 + te1α̂1

te
, where te = te0 + te1. (9)

Similarly, α̂∗ is an estimator of the overall expected accu-
racy α∗, defined as:

α∗ =
te0α0 + te1α1

te
. (10)

Intuitively, if the null hypothesis H0 holds, the classifier
cannot distinguish between the two distributions, and thus
α0 = α1 = 0.5, leading to α∗ converging to 0.5.

Half-permutation method. With this notation in mind, we
follow Ilmun Kim [13] and divide the data accordingly. Af-
ter training the logistic regression classifier C on Xtrain and
Ytrain, we measure its accuracy α̂∗ over the test samples Xtest
and Ytest.

We then merge Xtest and Ytest into one set Z , permute
the labels randomly, and split them into two equal halves
to generate new datasets Z1 and Z2. By testing the trained
classifier C on these permuted datasets, we obtain permuted



accuracies α1, α2, . . . , αP . Under the null hypothesis, these
permuted accuracies are estimators of the expected accu-
racy when the labels are independent of the inputs. As P
increases, they provide an accurate estimate of the null dis-
tribution of the accuracy estimator. We repeat this process
P times, choosing P > (1 − α)/α (e.g., P ≥ 100 for
α = 0.01).
Sorting α̂∗, α1, . . . , αP , we assign an order to each accu-
racy. The hypothesis test can be represented by the indicator
function:

Hp ≡ 1

(
α̂∗ > α(k)

)
, (11)

where α(k) is the kth order statistic of the sample, with
k = ⌈(1 − α)(1 + P )⌉. Essentially, if the classifier’s ob-
served accuracy α̂∗ significantly exceeds the accuracies ob-
tained due to ”luck” (i.e. the most predictive random label
assignment), it suggests that the classifier captures true dif-
ferences between P0 and P1. [13] proves the consistency of
this test and that the size, asymptotically and under the null
hypothesis, will be less than α.

Setup. The authors suggest using n ≥ 400 samples for
high-dimensional data (d ≥ 200) and a train-test ratio κ
of 1/2. We used n = 5000 total samples, with κ = 1/2,
resulting in tr0 = tr1 = 2500 training samples and te0 =
te1 = 2500 test samples from each distribution.
Restricting P > (1−α)/α for α = 0.01, we have P ≥ 100.
We set P = 1000, also testing P = 100, and achieved sim-
ilar results. The classifier achieved an observed accuracy of
α̂∗ = 95.32%. The permuted accuracies αi ranged between
47.48% and 52.84%, centered around 50%, as expected un-
der the alternative. Below are the sorted permuted accura-
cies and the true model accuracy α̂∗:

0.4748, 0.4804, . . . , 0.5196, 0.5228, 0.5284, 0.9532.
(12)

Conclusion. The test easily rejected the null hypothesis at
α = 0.01, indicating that the two tensors were drawn from
different distributions. We conclude that there indeed are
significant differences in the activation patterns of the neu-
rons in the network governed solely by resolution. This sug-
gests that the network indeed learns separate convolutional
kernels for processing objects at different resolutions, rather
than a single set of uniformly applicable kernels with less
sensitivity for any given resolution type. Figure 6g,h in the
main paper shows the values of the most significant predic-
tors learned by the Type 0/Type 1 logistic classifier. We can
clearly see that the higher variable resolution images (Type
1) tend to induce a higher activation value in some neurons
(h), while other neurons seem to fire equally for both reso-
lution types (g). This indeed suggests some resolution spe-
cialization in the neurons of the network.
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