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Supplementary Material

A. Methodology Details
In this section, we provide additional details about the
methodology of our proposed SplatFlow model, extending
the description given in Section 4. We begin by elaborat-
ing on the architecture and training details of the Gaussian
Splatting Decoder (GSDecoder) in Section A.1, covering the
specific modifications made to adapt the Stable Diffusion 3
decoder to 3D Gaussian Splatting (3DGS). Following that,
we provide details on the Multi-View Rectified Flow (RF)
model, including the architecture, loss functions, and sev-
eral modifications made to the sampling process to jointly
generate multi-view images, depths, and camera poses in
Section A.2. Finally, we describe the editing process em-
ployed by SplatFlow, discussing how training-free inversion
and inpainting techniques are applied to facilitate seamless
3D editing in Section A.3.

A.1. Gaussian Splatting Decoder (GSDecoder)
Architecture Our GSDecoder architecture builds upon the
Stable Diffusion 3 decoder architecture [7], with key modifi-
cations to adapt it for 3D Gaussian Splatting (3DGS). Specif-
ically, we adjusted the input channel size to accommodate
the concatenated latents of images, depths, and rays, and al-
tered the output channel size to produce pixel-aligned 3DGS
parameters. Furthermore, we modified the attention layers
to incorporate cross-view attention, enabling the attention
mechanism to operate across all view tokens simultaneously,
rather than processing tokens for each view independently.
We initialized the GSDecoder weights using the pre-trained
weights from the Stable Diffusion decoder for all layers,
except for the input and output layers. For these layers, we
initialized the first channels with the corresponding Stable
Diffusion weights, and the remaining channels were initial-
ized by copying these values.

Loss function Our GSDecoder is trained using a weighted
sum of three losses: mean squared error loss, LPIPS [45],
and vision-aided GAN loss [15]. Specifically, the vision-
aided GAN loss leverages backbones from DINO [4] and
CLIP [31], and we incorporated differentiable augmenta-
tion [13] along with a multi-level version of hinge loss1.
Therefore, our loss can be represented as:

Ldecoder = w1Lmse + w2LLPIPS + w3Lvision-aided, (1)

where Lmse, LLPIPS, and Lvision-aided represent the mean
squared error loss, LPIPS loss, and vision-aided GAN loss,
respectively, all computed between the rendered images from

1https://github.com/nupurkmr9/vision-aided-gan

the 3DGS and the target view images. The weight factors
for each loss are denoted by w1, w2, and w3, and We set
w1 = 1 and w2 = 0.05. Regarding w3, we turn it after train-
ing undergoes specific iterations, and we utilize the adaptive
weighting scheme in [33]. Specifically, w3 is determined
at each training iteration based on the ratio of l2-norm of
the gradient of other loss functions to the gradient of the
vision-aided GAN loss at the last layer parameters of the
GSDecoder. This ratio is then multiplied by 0.1 to set w3.

A.2. Multi-View Rectified Flow Model
Architecture The architecture of our multi-view rectified
flow (RF) model is primarily based on the Stable Diffusion
3 medium [7]2, with modifications to fit our requirements.
We expanded the input and output channels to accommodate
concatenated latents, and updated the attention mechanism to
incorporate cross-view attention. The model was initialized
using pre-trained weights from Stable Diffusion 3. For the
input and output layers, the extra channels were initialized
by copying the pre-trained weights.

Training Following practices in Stable Diffusion 3 [7], we
applied an SNR sampler and used three text encoders.

Sampling Process Since our multi-view RF model gener-
ates images, depths, and camera poses simultaneously, we
modified the sampling process to effectively handle these
joint tasks. Algorithm 1 outlines our sampling procedure,
emphasizing three key modifications:

• Early stopping of camera pose updates: We adopt the
early stopping approach from RayDiffusion [44], where
camera poses are determined early in the sampling pro-
cess and remain fixed for subsequent steps. This prevents
instability and helps maintain a consistent reference frame
for the generated views.

• Intermediate pose optimization with constrained man-
ifold: To improve camera pose estimation, we introduce
a step to predict the sampling destination for ray latents,
regress camera poses, and project the resulting Plücker ray
representation onto a valid ray manifold at each sampling
step. This helps avoid error accumulation and ensures that
the poses remain accurate throughout the entire process.

• Stable Diffusion 3 guidance for generalization: We in-
tegrate vector fields from Stable Diffusion 3 [7] into the
sampling process before fixing the camera poses. This en-
hances the generalizability of our model, especially given
the smaller in-the-wild 3D scene datasets we use [21, 43].
Applying this guidance early ensures consistency between

2https://huggingface.co/stabilityai/stable-diffusion-3-medium
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Algorithm 1 Sampling Process of SplatFlow
Input:

uθ ▷ Velocity function of SplatFlow
vϕ ▷ Velocity function of SD3
t = [tN , . . . , t0] ▷ Timesteps
tstop ▷ A time step to stop updating ray latents
Y tN = X

(1:K)
tN

= (X1
tN . . .XK

tN ) ∼ N (0, I) ▷ Initial Noise
Sampling:

1: for i = N, . . . , 1 do
2: v̂ti ← uθ(Y ti , ti)

3: if i ≥ tstop then
4: if N − i ≡ 0 mod 3 & i ̸= tstop then
5: v̂ti [: n]← vϕ(Y ti [: n], ti) ▷ Replace to SD3

6: end if
7: Ỹt0 ← Y ti − tiuθ(Y ti , ti) ▷ Predict Destination

8: ⟨d(1:K),m(1:K)⟩ ← Ỹt0 [2n :] ▷ Extract Ray Latent

9: for j = 1, . . . ,K do
10: ⟨Kj ,Rj ,T j⟩ ← ray optimize(⟨dj ,mj⟩)

11: end for
12: ⟨K,R(1:K),T (1:K)⟩ ← shared K(⟨K,R,T ⟩(1:K))

13: ⟨d(1:K),m(1:K)⟩ ← plücker(⟨K,R(1:K),T (1:K)⟩)
14: rt0 ← ⟨d(1:K),m(1:K)⟩ ▷ Update Ray Destination

15: end if
16: Y ti−1 ← Y ti + (ti−1 − ti)v̂ti(Y ti , ti)

17: z ∼ N (0, I)

18: Y ti−1 [2n :]← (1− ti−1)rt0 + ti−1z

19: end for
20: return Yt0 ,K,R(1:K),T (1:K)

multi-view images and depths while improving their qual-
ity. Also, we use the dual-mode toggling approach similar
to Dual3D [16], applying the guidance every three sam-
pling steps to balance generalizability with 3D consistency.

To regress the camera poses for j-th view Kj ,Rj ,T j

from the Plücker ray representation with h×w rays, we use
the same optimization process in RayDiffusion [44] as:

cj = argmin
p∈R3

∑
⟨dj ,mj⟩∈R

∥p× dj −mj∥2, (2)

P j = argmin
∥H∥=1

h×w∑
i=1

∥Hdj
i × ui∥, (3)

where u is the per-pixel ray directions of an identity camera
(i.e., K = I and R = I). Then, the projection matrix P j

is decomposed into the intrinsic matrix Kj and the rotation
matrix Rj via DLT [1]. We further optimize intrinsic and
rotation matrices for K views using an Adam [14] optimizer
with 10 iterations (which adds negligible overhead), ensuring
that all views share the same intrinsic matrix as:

Algorithm 2 Inpainting Process of SplatFlow
Input:

uθ ▷ Velocity function of SplatFlow
t = [tN , . . . , t0] ▷ Timesteps
tstop ▷ A timestep to stop updating ray latents
Y known
t0 ▷ Known latents

m ▷ Mask for known latents
Y tN = X

(1:K)
tN

= (X1
tN . . .XK

tN ) ∼ N (0, I) ▷ Initial noise
Sampling:

1: for i = N, . . . , 1 do
2: if i ≥ tstop then
3: Ỹt0 ← Y ti − tiuθ(Y ti , ti) ▷ Predict Destination

4: ⟨d(1:K),m(1:K)⟩ ← Ỹt0 [2n :] ▷ Extract Ray Latent

5: for j = 1, . . . ,K do
6: ⟨Kj ,Rj ,T j⟩ ← ray optimize(⟨dj ,mj⟩)

7: end for
8: ⟨K,R(1:K),T (1:K)⟩ ← shared K(⟨K,R,T ⟩(1:K))

9: ⟨d(1:K),m(1:K)⟩ ← plücker(⟨K,R(1:K),T (1:K)⟩)
10: rt0 ← ⟨d(1:K),m(1:K)⟩ ▷ Update Ray Destination

11: end if
12: Y unknown

ti−1
← Y ti + (ti−1 − ti)uθ(Y ti , ti)(Y ti , ti)

13: z ∼ N (0, I)

14: Y unknown
ti−1

[2n :]← (1− ti−1)rt0 + ti−1z

15: ϵ ∼ N (0, I)

16: Y known
ti−1

= (1− ti−1)Y
known
t0 + ti−1ϵ

17: Yti−1 = m⊙ Y known
ti−1

+ (1−m)⊙ Y unknown
ti−1

18: end for
19: return Yt0 ,K,R(1:K),T (1:K)

⟨K,R(1:K)⟩ = argmin
∥R∥=1

K∑
j=1

h×w∑
i=1

∥Rjdj
i × uK,i∥, (4)

where uK is the per-pixel ray directions of a camera with the
intrinsic matrix K and the identity rotation matrix. Then, we
calculate the translation vector of each view T j = −Rj⊤cj .
We set the total sampling steps N to 200 and tstop to 150. We
employ different classifier-free guidance [12] scales to solve
ODE for each latent, where we use 7, 5, and 1 for image,
depth, and ray latents, respectively. We set the classifier-free
guidance scale to 3 for Stable Diffusion 3 guidance.

A.3. Inpainting Process
By integrating the RePaint [23] into the rectified flow model,
our multi-view RF model becomes adaptable to 3DGS edit-
ing and training-free downstream tasks such as 3D object
replacement, novel view synthesis, and camera pose estima-
tion. Algorithm 2 provides an overview of our inpainting
process, which incorporates an early stopping strategy and
intermediate ray inversion during the sampling process. Fur-



thermore, we utilize RePaint [23] by leveraging the inversion
of known latents to refine the denoised unknown latents at
the final stage of each sampling step. As the inpainting pro-
cess depends on conditions derived from known latents, we
exclude the use of Stable Diffusion 3 guidance during the
inpainting process.

B. Experimental Setup Details
In this section, we provide comprehensive details regarding
the experimental setups used in our paper, extending beyond
the brief description given in Section 5.

B.1. Implementation Details
Dataset As described in [43], the MVImgNet dataset con-
sists of 219,188 scenes annotated with camera parameters.
After removing erroneous scenes, we retained approximately
210K scenes. From these, 10K scenes were allocated as the
validation set, with 1.25K scenes designated for the valida-
tion of each specific task. The rationale for sampling is that
fully evaluating all 10K scenes is computationally intensive.
The DL3DV [21] dataset originally contained 10K scenes,
but during our experimental period, only 7K scenes were
available. Therefore, we utilized the 7K available sequences
and allocated 300 sequences as the validation set. Since nei-
ther dataset includes text annotations for each scene, we
extracted text descriptions by utilizing the Llava-One Vision
Qwen7B model. A random image was selected to generate
the corresponding text descriptions.

Training configuration Excluding the validation set de-
scribed above, we used the remaining dataset to train Splat-
Flow. Both the GSDecoder and the multi-view RF model
were trained with an 8-view setup, sampling 8 viewpoints
per scene. Specifically:

• GSDecoder: Trained for 400K iterations with a batch size
of 8, using the AdamW optimizer [22] and a learning rate
of 5× 10−5. The vision-aided GAN loss was activated at
200K iterations, during which the discriminator learning
rate was doubled to 1 × 10−4. For depth estimation, we
used the DepthAnythingV2 Small model [41]3.

• Multi-view RF model: Trained for 100K iterations with
a batch size of 256, using the AdamW optimizer with a
learning rate of 1× 10−4. The learning rate was linearly
warmed up for the initial 1K steps. For extracting the depth
map, we used the DepthAnythingV2 Small model as in
the GSDecoder.

B.2. Detailed Setups in Text-to-3DGS Generation
Evaluation protocol We evaluated the performance of our
3DGS generation model using text annotations from the

3https://huggingface.co/depth-anything/Depth-Anything-V2-Small

validation sets of the MVImgNet and DL3DV datasets. The
corresponding ground-truth images were used as reference
images for calculating Fréchet Inception Distance (FID) and
CLIP scores. Specifically, we used 10K reference images
from MVImgNet and 2.4K reference images from DL3DV.

FID score was calculated using CleanFID [29]4 to as-
sess the distance between the generated and reference im-
ages. CLIP scores were computed using the ”openai/clip-vit-
base-patch16” model to measure the alignment between the
generated images and text descriptions. These quantitative
measurements are conducted for the rendered 8-views.

B.3. Detailed Setups in 3DGS Editing
Evaluation protocol We conducted a benchmark on 100
scenes from the MVImgNet dataset to evaluate object re-
placement capabilities. For this, we used GPT-4o with the
following prompt:
You are a vision-language model designed to

create captions that describe object
replacements in images. Given an input image
and its caption, your task is to produce a
new caption where the primary object is
replaced with a different one, maintaining
the overall context and scene.

Guidelines:
1. Object Replacement Focus: Change the main

object in the caption to a different but
plausible one for the scene. Keep other
details consistent with the original setting
(e.g., background, lighting).

2. Natural Integration: Ensure the new object
fits logically within the environment
described. Avoid improbable replacements that
clash with the scene’s context or elements.

3. Clarity and Directness: Use clear and
straightforward language to describe the new
object in place of the original, reflecting
the same style as the given caption.

4. Single Object Focus: Most images will contain
a single object, so focus solely on replacing
that object without altering other aspects
of the scene unless explicitly instructed.

5. If the given caption describe empty scene like
empty hallway, add a ’new object’ to the
scene.

6. Just return the text.

Example:

- Input Caption: "A white tag with a green leaf
design and the text \"HEY!\" on it.|Leaf-
shaped tag on hanger, black and white
checkered background."

- Target Caption: "A sleek metallic spoon with a
reflective surface on a plaid fabric."

4Implementation available at https://github.com/GaParmar/clean-fid

https://huggingface.co/depth-anything/Depth-Anything-V2-Small
https://github.com/GaParmar/clean-fid


Method PSNR↑ LPIPS↓ SSIM↑ FID-50K↓
w/o Depth Latent (200K Iterations) 25.64 0.2507 0.7993 16.29
w/ Depth Latent (200K Iterations) 26.19 0.2260 0.8169 11.92

w/ Depth Latent (400K Iterations) 26.68 0.2129 0.8251 8.80
+ Vision-Aided GAN Loss 26.84 0.2048 0.8256 5.81

Table 1. Ablation study on GSDecoder design choices. Evalu-
ations are performed using PSNR, LPIPS, SSIM, and FID, high-
lighting the impact of incorporating depth latents and vision-aided
GAN loss in improving 3DGS quality.

Out of 100 scenes, GPT-4o successfully generated captions
for 98 scenes. Two scenes failed due to response refusal
from GPT-4o. Evaluation metrics were then calculated on
8 rendered views per method, using the newly generated
captions to guide editing.
Comparison Methods. We used DGE [5] and MVIn-
painter [3] as baselines by using their official implemen-
tations with the following configurations:
• DGE [5]: To create 3D Gaussian Splatting (3DGS) rep-

resentations as the initial point for DGE, all viewpoint
images were utilized. Subsequently, 3DGS editing was
performed using the provided captions.

• MVInpainter [3]: Similar to our method, MVInpainter ex-
tracts 8 views and generates masks for these views. These
masks are then used with Stable Diffusion 2, a text-to-
image inpainting model, to edit the first view. The remain-
ing views are inpainted based on the edited primary view.

C. Additional Experimental Results
To comprehensively validate the effectiveness of SplatFlow,
we provide additional experimental results in this section.

C.1. Ablation on GSDecoder Design Choice
To validate the effectiveness of our design choices in the
GSDecoder, we conducted ablation studies focusing on two
key aspects: (1) the incorporation of depth latents, and (2)
the impact of the vision-aided GAN loss. We analyzed these
effects by comparing four variants of our GSDecoder:
• Without Depth Latents (200K iterations): A baseline

variant that excludes depth latents during training to evalu-
ate the effect of incorporating depth information.

• With Depth Latents (200K iterations): This version in-
cludes depth latents to assess their contribution to improv-
ing the quality of the generated 3D Gaussian Splatting.

• With Depth Latents (400K iterations): We extended
the training by 200K iterations to examine the impact of
prolonged training without the vision-aided GAN loss.

• With Depth Latents + Vision-Aided GAN Loss (400K
iterations): This variant applies the vision-aided GAN
loss starting after 200K iterations to evaluate the impact
of adversarial training on enhancing 3DGS quality.

For training, we utilized the MVImgNet dataset excluding
the 10K validation split. We evaluated the generated outputs

w/o Depth
(200K iter)

w/ Depth
(200K iter)

w/o GAN Loss
(400K iter)

w/ GAN Loss
(400K iter)

Target
View

Zoom:
w/o Depth
(200K iter)

Zoom:
w/ Depth
(200K iter)

Zoom:
w/o GAN Loss

(400K iter)

Zoom:
w/ GAN Loss

(400K iter)

Zoom:
Target

View

Figure 1. Ablation study on GSDecoder design choices. The
first row shows the original views, while the second row provides
zoomed-in details for better visualization. Incorporating depth la-
tents and vision-aided GAN loss enhances the realism and quality
of generated 3D Gaussian Splatting (3DGS) scenes.

using 5 rendered images per scene, measured by PSNR,
LPIPS [45], SSIM [39], and FID [11]. For FID calculations,
we sampled 50K reference images.

The results of this ablation study are illustrated in Table 1.
As shown, incorporating depth latents and vision-aided GAN
loss both contributed significantly to improving the quality
of 3DGS. 1) Depth latents: Incorporating depth latents led to
substantial improvements in PSNR, LPIPS, SSIM, and FID
metrics compared to the baseline without depth information.
This demonstrates that including depth information enhances
the quality and consistency of the decoded scenes. 2) Vision-
aided GAN loss: Adding vision-aided GAN loss after 200K
iterations yielded the best performance across all metrics.
Compared to training without vision-aided GAN loss, it
significantly improved perceptual quality, as evidenced by
better LPIPS and FID scores.

Additionally, the qualitative comparison of the four GS-
Decoder variants is presented in Fig. 1. The images demon-
strate that incorporating depth latents significantly enhances
the sharpness and detail of the generated scenes compared
to the baseline without depth information, leading to more
accurate reconstructions of the target view. Furthermore,
adding the vision-aided GAN loss at 400K iterations results
in the most visually compelling outputs, with enhanced tex-
ture details and consistency across views. This progression
from the baseline to the final variant clearly highlights the
positive impact of both depth information and adversarial
training on the quality of novel view synthesis. Specifically,
the final configuration (w/ GAN Loss, 400K iter) shows im-
provements in fine-grained textures and overall coherence,
making it visually closer to the target view.

C.2. Ablation on Sampling Process
We modified the sampling process to enhance the quality
of joint image, depth, and camera pose generation. Here,
we present the ablation study for evaluating the impact of



Method FID-10K↓ CLIPScore↑
Stop-Ray (tstop = 100) 35.55 31.37
Stop-Ray (tstop = 50) 37.89 31.41
w/o Stop-Ray (tstop = 0) 47.32 30.12

SplatFlow - Default (tstop = 150) 34.85 31.43

Table 2. Impact of the Stop-Ray modification. Evaluations are
conducted using FID-10K and CLIPScore metrics to assess the
effectiveness of stopping camera ray updates at different timesteps
in the sampling process.

Method FID-10K↓ CLIPScore↑
SplatFlow (w/o SD3 Guidance) 34.88 30.67
SplatFlow (full model) 34.85 31.43

Table 3. Impact of Stable Diffusion 3 Guidance. The table com-
pares the FID-10K and CLIPScore metrics for SplatFlow with and
without SD3 guidance.

the main modifications: 1) early stopping of camera pose
updates and 2) Stable Diffusion 3 guidance.

Effect of Early Stopping To assess the impact of early
stopping for camera pose updates, we varied the stopping
step (tstop) at different values: 150 (the original, base setup),
100, 50, and 0 (no early stopping) during 200 total sampling
steps. As shown in Table 2, stopping early at tstop = 150
results in the best FID-10K and CLIPScore, indicating that
fixing the camera poses early stabilizes the generated views.
At tstop = 100, there is a slight degradation in FID-10K and
CLIPScore compared to tstop = 150, and the performance
further drops at tstop = 50, which suggests that extending the
camera pose updates introduces more degradation in the gen-
erated views. When no early stopping is applied (tstop = 0),
both metrics degrade significantly, highlighting the increased
instability in camera pose updates over the entire sampling
process. These results underline that stopping the ray updates
early, preferably at tstop = 150, is crucial for maintaining
high-quality generation.

Effect of Stable Diffusion 3 guidance To measure the
effects of Stable Diffusion 3 (SD3) guidance, we compared
the original SplatFlow model, which includes SD3 guidance,
against a variant without it. As shown in Table 3, removing
SD3 guidance leads to a slight increase in FID-10K (34.88
compared to 34.85) and a notable drop in CLIPScore (from
31.43 to 30.67). These results indicate that SD3 guidance
contributes positively to the consistency between generated
images and the provided text prompts, thereby improving
the alignment and quality of the generated outputs. Including
SD3 guidance ensures better generalizability and alignment,
particularly for smaller in-the-wild datasets.

C.3. More Results on Text-to-3DGS Generation
Generalizability evaluation Although our SplatFlow is
trained on the MVImgNet [43] and the DL3DV [21]

Method BRISQUE↓ NIQE↓ CLIPScore↑
DreamFusion [30] 90.2 10.48 -
Magic3D [20] 92.8 11.20 -
LatentNeRF [25] 88.6 9.19 -
SJC [38] 82.0 10.15 -
Fantasia3D [6] 69.6 7.65 -
ProlificDreamer [40] 61.5 7.07 -

Director3D [17] 37.1 6.41 32.0
Director3D (w/ SDS++) [17] 32.3 4.35 32.9

SplatFlow 16.8 5.88 28.9
SplatFlow (w/ SDS++) 19.6 4.24 33.2

Table 4. Quantitative results in Single-Object-with-Surrounding
set of T3Bench [9]. For the CLIPScore, we report our reproduced
score due to an error in the measurement of Director3D [17].

datasets, we conducted an experiment on Single-Ojbect-with-
Surrounding sets of T3Bench [9] to validate the generaliz-
ability of our SplatFlow for unseen domain texts. Follow-
ing evaluation protocols in Director3D [17], we utilized the
BRISQUE [26] and the NIQE [27] to evaluate the image
quality and the CLIPScore [10] to measure alignment with
text prompts.

Table 4 demonstrates that our SplatFlow outperforms the
previous text-to-3D generation methods across all metrics.
Notably, our SplatFlow achieves a significantly lower score
than other methods in the BRISQUE metric even without
the refining process. Our SplatFlow performs worse than
Director3D [17] in CLIPScore when both models are eval-
uated without a refining process, suggesting that SplatFlow
has lower generalizability to text prompts due to its smaller
training dataset. However, SplatFlow generates significantly
higher-quality images compared to Director3D. This allows
the refining process to focus primarily on aligning with the
text prompts rather than enhancing image quality, leading
to a substantial improvement in CLIPScore and ultimately
surpassing Director3D [17].

Qualitative results As shown in Fig. 6, our SplatFlow
generates realistic 3DGS and camera poses from various
text prompts across MVImgNet [43], DL3DV [21], and
T3Bench [9]. Interestingly, our SplatFlow primarily pro-
duces a straight-line camera trajectory for scenery-based
descriptions, while creating a circular camera trajectory for
object-centric descriptions.

C.4. More Results on 3DGS Editing
3D object replacement Our SplatFlow enables 3DGS edit-
ing through a modified SDEdit [24] combined with the in-
painting process outlined in Algorithm 2. Specifically, for 3D
object replacement, we perform an inversion on the masked
region at t = 190 out of 200 total sampling steps, treating the
remaining area as known regions by utilizing the foreground
mask of the main object. Additional qualitative results on the
3D object replacement are presented in Fig. 2, confirming
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Figure 2. Additional qualitative results in 3DGS editing.

its effectiveness in 3DGS editing on various objects.

3DGS editing with strokes Interestingly, our SplatFlow
can selectively edit specific portions of the generated 3DGS
based on user-provided input strokes. Specifically, we per-
form an inversion on all rendered multi-view images with
strokes at t = 100 out of 200 total sampling steps, followed
by denoising the latents using edited captions. As shown
in Fig. 3, even with rough stroke inputs that are 3D inconsis-
tent, the edited 3DGS maintains a highly natural appearance.

D. Anaylsis and Discussion
D.1. Depth Map Visualization
Note that better performance is achieved when the depth
map from DepthAnythingV2 [41] is not used for camera
pose estimation. Figure 4 shows the generated depth maps
obtained by jointly generating depth and ray latents from
multi-view images. Notably, the generated depth maps cap-
ture the details of the given images more effectively than
the ground truth provided by DepthAnythingV2 [41]. There-
fore, more detailed depth maps allow our multi-view RF to
achieve more accurate camera pose estimation.

D.2. 3D Consistency Analysis for the GSDecoder
In this section, we explore the role of the GSDecoder by
comparing the multi-view generated images with the 3D
Gaussian Splatting (3DGS) rendered outputs, as shown in
Fig. 5. The multi-view images are decoded using the Stable
Diffusion 3 decoder, while the 3DGS is rendered using our
GSDecoder in a feed-forward manner. Our objective is to
analyze how the GSDecoder contributes to achieving consis-
tency across the 3D space by transforming the multi-view
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Figure 3. Qualitative results on 3DGS editing with user-provided
strokes. Despite the rough strokes applied to the rendered scene,
our SplatFlow enables seamless and natural 3DGS editing.
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Figure 4. Depth map visualization. Given multi-view images, we
show generated depths that are jointly inpainted with camera poses.

latent representations into a coherent 3D representation.
From our analysis, we observe that the GSDecoder can

help mitigate inconsistencies present in the multi-view gen-
erated images. Specifically, there are instances where slight
variations in the appearance of objects, such as colors or
shapes, are noticeable in the multi-view generated images,
which can lead to a lack of 3D coherence in the generated
scene. The GSDecoder processes these inconsistencies by
smoothing them, resulting in more consistent 3DGS parame-
ters across multiple views. In the case of the red apple on a
wooden surface, the GSDecoder addresses inconsistencies in
the apple’s color and shape that are evident in the multi-view
images. For the wooden chair with blue poles and leaves on
the ground, the GSDecoder helps align the color of the seat
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Figure 5. GSDecoder analysis. Comparison between multi-view generated images (top row of each pair) and 3D Gaussian Splatting (3DGS)
rendered outputs (bottom row of each pair) using the GSDecoder. The GSDecoder helps smooth out inconsistencies present in the multi-view
generated images, such as variations in color and shape, resulting in more coherent 3D representations. For example, inconsistencies in the
apple’s color and shape, and in the seat cushion’s color of the wooden chair, are corrected.

cushion, making it more consistent across different views.
Overall, the GSDecoder prioritizes 3D consistency at the
cost of slightly blurring some details, ultimately enhancing
the coherence of the generated scene.

D.3. Discussions
Inference time It takes about 20 seconds to generate one
3D scene from text prompts and 5 minutes for the refining
process (i.e., SDS++ [17]). This is similar to Director3D [17]
which also utilizes the same refining process.

Future works and limitations As our SplatFlow is trained
only on MVImgNet [43] and DL3DV [21], its generaliz-
ability to unseen text prompts has room for improvement.
Specifically, training with a large text-to-image dataset [34]
and other multi-view image datasets [32] can improve the
generalizability. Additionally, we believe that the inversion
technique or inpainting method suitable for the rectified flow
model can be combined with our multi-view RF model to
achieve better quality 3DGS editing.

Ethical Considerations Advancements in 3D generation
technology raise several ethical considerations that require

careful attention. A significant concern is the potential mis-
use of generated 3D content, as it could be exploited to create
deceptive or misleading visuals. Fabricated content could be
presented as authentic, potentially leading to harm or mis-
information. To prevent the misuse of this technology, it is
crucial to establish clear guidelines for responsible use and
enforce ethical standards. Implementing robust safeguards
and obtaining informed consent, especially when processing
images that contain personal information, are crucial steps
to prevent the misuse of this technology.

D.4. Extended Related Works

We sincerely appreciate the reviewers’ valuable feedback
and have decided to add relevant discussions in this section.
Previous works have attempted to ensure 3D consistency by
leveraging diffusion models [2, 36]. Concurrent works have
further taken a step toward direct 3D Gaussian Splatting
(3DGS) by replacing conventional diffusion decoders with
Gaussian Splatting-based decoders [8, 18, 19, 28, 35, 37, 42].
We believe this direction is not only more versatile but also
paves the way for more straightforward and effective editing
through generative modeling.



MVImgNet [43] validation set

“Two durians with spiky skins and a purple tag” “Mannequin torso with scarf, turquoise background” “Top view of a cabbage on a wooden surface”

“Blue slide sandal with bear face and stars” “Pink and white keyboard with pink keys” “A piece of bread, resting on a patterned surface”

DL3DV [21] validation set

“A stone building with a tiled floor and an arched
window”

“A modern office space with a bench, chairs, and
tables”

“A serene park with picnic tables, benches, and a
gazebo”

“A blue cloth on a wooden surface with three
peaches”

“Rows of colorful books on shelves in a bookstore” “A modern building with a unique facade and large
windows”

T3Bench [9] - Single-Object-with-Surrounding set

“A stack of pancakes on a breakfast table” “A jar of homemade jam on a kitchen counter” “A bright sunflower in a field”

“A colorful parrot on a jungle tree” “A pair of hiking boots on a trail” “A rainbow over a waterfall”

“A snowman wearing a scarf in a winter landscape” “A striped beach umbrella standing tall on a sandy
beach”

“A black and white photograph framed in dark
mahogany”

Figure 6. Additional qualitative results in 3DGS generation on MVImgNet [43], DL3DV [21], and T3Bench [9]. We show eight
rendered scenes and camera poses from given text prompts, where image border colors match each camera.
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