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A. Limitations and Future Work

Despite the progress achieved in our talking head animation
approach MGGTalk, several limitations warrant further in-
vestigation. We identify four primary areas for improve-
ment: (1) Unnatural connection among the head, neck,
and torso. Future work could employ a unified model of
head, neck, and torso to enhance realism in their transi-
tions and overall alignment. (2) Insufficient utilization of
video information to improve context consistency. Incor-
porating multi-frame constraints during training could bet-
ter estimate identity-specific shapes and maintain temporal
coherence, thereby strengthening the naturalness of gen-
erated outputs [66]. (3) Potential inaccuracies in single-
view depth estimation. Errors in depth estimates can com-
promise 3D modeling accuracy; adopting more robust ap-
proaches—such as DPT [67] or Sapiens [68]—may sub-
stantially improve reconstruction fidelity. (4) Unnatural re-
sults under severe asymmetry or challenging illumination.
Complex lighting conditions can lead to unrealistic ren-
derings, suggesting the need for illumination-aware control
that adapts generation to diverse lighting environments. Ad-
dressing these limitations will further refine the quality, re-
alism, and robustness of Talking Head Animation methods.

B. Ethics Consideration

The proposed talking head animation method is primarily
intended for applications in virtual communication and en-
tertainment. Nonetheless, it may raise ethical and legal con-
cerns if exploited for deceptive or harmful purposes by ma-
licious actors. To mitigate these risks, it is essential to es-
tablish clear ethical guidelines and responsible usage prac-
tices that explicitly prohibit misuse. By doing so, we can
help ensure that this technology is employed in a manner
that promotes beneficial applications while minimizing po-
tential harm.

C. Preliminary of 3DGS

3D Gaussian Splatting (3DGS) [21] utilizes anisotropic 3D
Gaussians as geometric primitives to learn an explicit 3D
representation. The geometry of each 3D Gaussian is de-
fined as follows:

g(x) = e(−
1
2 (x−µ)TΣ−1(x−µ)) (8)

where µ ∈ R3 is the center of the Gaussian and Σ ∈ R3×3

is the covariance matrix that defines its shape and size.
The covariance matrix Σ can be further decomposed into

Σ = RSSTRT , where S denotes a scaling matrix deter-
mined by a scaling vector s ∈ R3, while R indicates a
rotation matrix defined by a quaternion r ∈ R4. Addi-
tionally, each Gaussian has an opacity value o ∈ R which
determines its visibility, and a color feature defined by
c ∈ R12. Collectively, these parameters define each Gaus-
sian as G = {µ, r, s, o, c}. Specifically, µ represents the po-
sition parameter of the Gaussian, which will be equivalently
referred to as the three-dimensional coordinates of points in
the Gaussian point cloud P in the subsequent discussion.
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Figure 9. Visualization of voxel filter rules. (a) illustrates occlu-
sion removal along the z-axis, while (b) shows adjacent removal.

D. Implementation Details
D.1. Voxel-Based Filter
We propose a voxel-based filter Fvoxel to effectively re-
move occluded or closely overlapping mirrored points from
point clouds. The method voxelizes both the original and
mirrored point clouds, then performs two key operations:
z-axis occlusion detection and neighborhood occupancy
checking. For z-axis occlusion, we compute the maximum
z-values at each (x, y) voxel index in the original point
cloud and compare them with mirrored points to discard
occluded regions, as shown in Figure 9 (a). In the neigh-
borhood check, we determine if mirrored points fall within
the same voxel as the original points, considering them as
neighboring points, and thus discarding them, as shown in
Figure 9 (b). This combined approach efficiently retains
essential mirrored points while removing those that are oc-
cluded or redundant.

D.2. Motion Deformation
The Motion Deformation module is designed to deform the
3D point cloud [Pf ;P

s
f ] to synchronize it with the driving



audio or driving image. Unlike directly editing the 3D point
cloud using only the driving source, we also incorporate ex-
pression information from the source image to reduce the
complexity of mapping arbitrary source expressions to arbi-
trary target expressions. We use 3DMM reconstruction [47]
to extract the source expression basis βs from the source
image. For the driving input, the driving expression basis
βd is obtained via 3DMM reconstruction for driving images
or an audio-to-expression method [7] for driving audio. The
MLP then drives the source point cloud [Pf ;P

s
f ] to gen-

erate the driven point cloud [Pd;P
s
d] (Equation 9).

[Pd;P
s
d] = MLP([Pf ;P

s
f ], βd, βs) (9)

D.3. Gaussian Decoder
The Gaussian Decoder Dgs is designed to predict the re-
maining four Gaussian parameters—scaling s, rotation r,
color c, and opacity o—for the visible deformed region
point cloud Pd. First, the input point cloud is reshaped
into the form of a position map with dimensions (3, H,
W). This map is then concatenated with the identity feature
F extracted from the source image and fed into a UNet-
based network to generate the s, r, c, and o. Finally, these
maps are reshaped back into point cloud format and con-
catenated to form the complete set of Gaussian parameters
Gd = {Pd ∈ RH·W×3, s ∈ RH·W×3, r ∈ RH·W×4, c ∈
RH·W×12,o ∈ RH·W×1}.

D.4. Sym-Gaussian Decoder
The Sym-Gaussian Decoder Ds

gs is designed to generate
Gaussian parameters for the non-visible regions of the point
cloud Ps

d. Given the challenge of obtaining sufficient infor-
mation for these regions from the source image alone, fa-
cial symmetry priors are introduced as additional guidance.
Specifically, the previously generated Gaussian parameters
for the visible regions Gd, identity features F, and the sym-
metric point cloud Ps

d are concatenated and fed as input to
a convolutional network to predict the offset relative to the
already generated parameters. The networks for generating
the biases of each Gaussian parameter are denoted as Ds

s ,
Ds

r , Ds
c , and Ds

o, respectively, and the generation process
can be expressed as follows:

ss = s+Ds
s (F,P

s
d, s)

rs = r+Ds
r (F,P

s
d, r)

cs = c+Ds
c (F,P

s
d, c)

os = o+Ds
o (F,P

s
d,o)

(10)

Finally, we obtain the Gaussian parameters Gs
d =

{Ps
d, s

s, rs, cs,os} representing the non-visible facial re-
gions of the source image.

D.5. Rendering and Inpainting
We use differentiable rasterization to render the Gaussian
parameters Gden from the target viewpoint, resulting in an

RGB image Ihtgt. To stabilize the training process, we ad-
ditionally render the Gaussian parameters G before densifi-
cation into a coarse image Ihc . Subsequently, we inpaint the
torso and background regions of Ihtgt using Ibgs , producing
the final predicted image Itgt. Inspired by S3D-NeRF [40],
we employ a GAN-based network that takes the head image
and the torso-background image as inputs to generate a 512
× 512 composite image.

E. Additional Results
To demonstrate the effectiveness of our approach, we
provide additional visualizations and experimental results
within the context of the video-driven talking head genera-
tion task.

E.1. Visualization of Gaussian Point Cloud Con-
struction in DSGR

We utilize visualizations in Figure 10 to observe the three
stages of point cloud construction in DSGR moudle. Ini-
tially, we use depth maps combined with normal maps as
input for the Surface Reconstruction module, forming the
initial facial geometry. Subsequently, a refinement network
adjusts the initial construction, and facial symmetry is in-
troduced to supplement the missing geometric structure in
the occluded areas of the face.

For the first stage, the combination of depth and normal
maps is critical. As illustrated in Figure 11, although the
geometry derived directly from the depth map exhibits a
stronger sense of three-dimensionality, it is often inaccurate
due to monocular depth estimation limitations. For exam-
ple, the first row shows an exaggerated nose, and the sec-
ond row an overly sharp chin. Additionally, the geomet-
ric continuity of point clouds obtained through depth map
back-projection is often inadequate, which hinders network
training convergence. To address these inaccuracies, we in-
corporate normal maps to enhance geometric details. Both
depth and normal maps are then used as inputs to the BINI
algorithm [50] for surface reconstruction, producing more
continuous and accurate 3D facial point clouds, as shown in
Figure 11 and 10 (a), where surface reconstruction achieves
smoother geometric continuity without the aforementioned
structural inaccuracies.

The refinement network, detailed in the next phase, fur-
ther adjusts the geometry to correct any residual inaccura-
cies, as illustrated in the Figure 10 (b). Although the initial
point cloud constructed from depth and normal maps pro-
vides a good foundation, it may appear flat and fail to ac-
curately represent the 3D facial structure. The refinement
module effectively addresses these issues.

Finally, the application of symmetry plays a crucial role
in reconstructing occluded regions of the face, which are of-
ten left incomplete in the initial stages. As shown in Figure
10 (c), The symmetry approach fills these gaps, ensuring a
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Figure 10. Visualization of the Gaussian point cloud construction in DSGR. The first row shows Gaussian point clouds obtained by ablating
different construction modules, while the second row presents the corresponding rendered images from the SGP module. The yellow point
cloud represents the geometry obtained from depth information, while the red point cloud indicates the symmetric augmentation of the
geometry. Front, left, and right viewpoints are displayed.
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Figure 11. Visualization of geometric structures obtained from
depth map projection versus surface reconstruction, including both
frontal and side views of the 3D point cloud.

Table 5. Quantitative results of video-driven methods on the
CelebV-HQ dataset [69]. We use bold text to indicate the best
results and underline to denote the second-best results.

Methods
Self-Reenactment Cross-Reenactment

PSNR↑ SSIM↑ FID↓ AED↓ APD↓ FID↓ AED↓ APD↓

Styleheat [10] 30.36 0.634 71.57 0.157 0.383 83.12 0.224 0.405

DaGAN [11] 30.81 0.626 57.72 0.113 0.196 60.45 0.244 0.308

ROME [53] 30.74 0.657 62.66 0.140 0.179 78.02 0.257 0.283

OTAvatar [54] 30.37 0.681 50.03 0.136 0.352 64.21 0.205 0.371

Real3DPortrait [18] 30.67 0.696 73.17 0.109 0.231 75.16 0.191 0.254

Portrait4D-v2 [14] 29.96 0.613 46.19 0.112 0.216 57.13 0.208 0.262

Ours 30.84 0.683 42.23 0.104 0.173 56.43 0.195 0.256

more comprehensive and accurate representation of the fa-
cial geometry across the entire point cloud.

E.2. Additional Results on HDTF and NeRSemble-
Mono

In Figure 12, we present additional cross-identity reenact-
ment results on the HDTF dataset (first four rows) and the
NeRSemble-Mono dataset (rows five to eight). The results
demonstrate that our method achieves strong identity con-
sistency and 3D coherence, while effectively synchronizing
facial expressions and poses with the driving source.

E.3. Additional Experiments on CelebV-HQ
Experimental Setups. To further evaluate the model’s per-
formance, we employed an additional dataset, CelebV-HQ
[69], for quantitative and qualitative experiments on video-
driven methods. Specifically, no training was conducted on
this dataset; instead, 40 video clips were selected for in-
ference. Data preprocessing and evaluation metrics were
consistent with those used in the main text.
Quantitative Results. Experimental results on the CelebV-
HQ dataset are presented in Table 5. For Self-Reenactment,
our method outperforms others in appearance quality met-
rics (PSNR and FID) and is comparable to Real3DPortrait
[18] in SSIM, indicating structural similarity. For Cross-
Reenactment, our approach maintains a lead in FID, demon-
strating superior identity preservation. Additionally, our
AED and APD scores are close to Real3DPortrait [18], in-
dicating effective control of facial expressions and poses.
Qualitative Results. The visual results on the CelebV-HQ
dataset are shown in the last two rows of Figure 12. De-
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Figure 12. Qualitative comparisons with previous video-driven methods on the HDTF [51], NeRSemble-Mono [52] and CelebV-HQ [69]
dataset. The first four rows show cross-identity driving results on the HDTF dataset, rows five to eight present results on the NeRSemble-
Mono dataset, and the final two rows display results from the CelebV-HQ dataset. To demonstrate the multi-view consistency of our
generated results, the last three columns display the fixed viewpoints at −30◦, 0◦ and +30◦.

spite using significantly less training data compared to some
methods [14, 18], our approach demonstrates competitive
performance on unseen, in-the-wild dataset [69], maintain-
ing strong 3D consistency as well as effective synchroniza-
tion of expressions and poses.

E.4. Further Enhancement of Lip Synchronization

Our MGGTalk framework already achieves the second-
best performance in terms of lip synchronization (LSE-C,
LSE-D). As shown in Table 6, introducing SyncNet [64]
provides additional performance improvements, suggesting
that adopting an audio-based synchronization module can

further refine the lip-sync accuracy of our method.

Table 6. Audio-riven results on HDTF [51] with the SyncNet [64]
supervision.

Method LSE-C↑ LSE-D↓
Wav2Lip [2] 8.84 6.48

MGGTalk 7.68 6.91
MGGTalk+SyncNet [64] 8.87 6.35



E.5. A Fairer Comparison with Lip-Sync Methods
In Table 2 of the main paper, we note that both Wav2Lip [2]
and IP-LAP [27] rely on the ground-truth upper-half region
to achieve pose alignment. To enable a more equitable com-
parison, we conducted experiments under a fixed pose set-
ting, and as shown in Table 7, our method attains the highest
image quality.

Table 7. Audio-driven results on HDTF [51] with fixed pose.

Method PSNR↑ SSIM↑ FID↓ LMD↓
Wav2Lip [2] 30.02 0.664 30.53 3.94
IP-LAP [27] 29.47 0.631 36.14 3.87

Ours 30.25 0.686 23.09 3.82

E.6. Robustness of the Deformation Module
To evaluate the robustness of our Deformation module un-
der inaccuracies in expression basis estimation, we intro-
duce Gaussian noise into the expression basis and monitor
the performance of the module. As shown in Figure 13 and
Table 8, when the standard deviation of the Gaussian noise
increases from 0 to 0.2, the predicted results remain rela-
tively stable.

Table 8. Self-reenactment results on HDTF [51] with varying
noise intensities added to the estimated expression features.

Noise std FID↓ AED↓
0.00 18.95 0.102
0.05 19.13 0.104
0.10 19.46 0.117
0.20 19.74 0.121

Source GT Predict Predict Predict Predict

Figure 13. Visualization of adding noise to expression features.
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