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The Devil is in Temporal Token: High Quality Video Reasoning Segmentation

Supplementary Material

This supplementary material provides additional details001
and analysis of VRS-HQ, expanding on the content pre-002
sented in the main paper. We begin by evaluating the im-003
pact of various training datasets on segmentation perfor-004
mance (§A). Next, we present more detailed implementa-005
tion information to facilitate reproducibility (§B). We then006
elaborate on the specific method of utilizing SAM2 [8]007
for mask decoding and propagation (§C). Subsequently, we008
show some failure cases with analysis to offer a more com-009
prehensive understanding of VRS-HQ’s limitations (§D).010
Then we compare VRS-HQ with other methods on the mul-011
timodal question-answering tasks. (§E) Additionally, we012
present more qualitative comparisons against VISA, high-013
lighting the strengths of our proposed method (§F). Finally,014
we visualize the reasoning segmentation results of VRS-HQ015
on in-the-wild video datasets, demonstrating its strong gen-016
eralization capabilities (§G).017

A. Datasets Ablation018

As illustrated in Tab. 1, fine-tuning with the full datasets019
yields the best performance while excluding the image020
segmentation dataset, VideoQA dataset [6], or ReVOS021
dataset [9] individually results in varying degrees of metric022
degradation. Notably, removing the VideoQA dataset min-023
imally impacts the model’s performance, with a decline of024
0.9% in J&F on both the referring and reasoning subsets,025
as its primary role is to support the MLLM’s video com-026
prehension rather than directly contributing to the segmen-027
tation process. In contrast, excluding the ReVOS dataset028
leads to a noticeable drop of 4.4% and 7.6% in J&F , high-029
lighting its pivotal role in enhancing the model’s reasoning030
segmentation performance in challenging scenarios.

Table 1. Ablation study on the impact of training datasets.
referring reasoningDatasets J F J&F J F J&F

Joint 59.8 64.5 62.1 53.5 58.7 56.1
w/o ImageSeg 58.5 63.2 60.8 51.0 56.3 53.6
w/o VideoQA 58.7 63.7 61.2 52.4 58.0 55.2
w/o ReVOS 55.3 60.1 57.7 45.3 51.6 48.5

031

B. Additional Implementation Details032

Due to space constraints of the main document, additional033
implementation details are provided here. During training,034
we use varying sampling ratios for different datasets (cf.035
Tab. 2). For video segmentation datasets, 8-12 frames are036
uniformly sampled at fixed intervals per video, and up to037
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Figure 1. Details of SAM2 for mask decoding and propagation.
All the video frames are input into the image encoder for feature
extraction. The feature embeddings of the keyframe interact with
h′
tak through the mask decoder for mask generation and then prop-

agate it to the remaining video frames via the memory mechanism.

three object categories are selected per image or video. Dur- 038
ing inference, we utilize CLIP-336 [7] for global sampling, 039
selecting up to 12 frames per video. Input images are re- 040
sized to 224 × 224 before being input to Chat-UniVi [3]. 041
Data passed to SAM2 is augmented as described in [4] and 042
resized to 1024 × 1024. Moreover, LoRA [2] is applied 043
with a scaling factor of 16 and a dropout rate of 0.05 across 044
all query and value projection layers within the MLLM, en- 045
abling efficient fine-tuning.

Table 2. Datasets sampling ratio during training.
Dataset SemSeg RIS ImageQA ReaSeg VideoQA VideoSeg
Ratios 9/32 3/32 3/32 1/32 1/8 3/8

046

C. More Details of SAM2 047

As depicted in Fig. 1, we provide detailed insights into the 048
process of mask decoding and propagation using SAM2 [8]. 049
Specifically, all input video frames are processed through 050
the image encoder to extract multi-scale visual features. 051
Subsequently, the fused temporal embedding h′

tak interacts 052
with the keyframe features in the mask decoder to gener- 053
ate the segmentation mask and perform video-level propa- 054
gation. The prediction is then encoded by the memory en- 055
coder and stored in the memory bank, which maintains a 056
FIFO queue of memories from recent frames. Feature em- 057
beddings from subsequent non-keyframes attend to these 058
stored mask features through memory attention and uti- 059
lize the mask decoder to generate corresponding masks, en- 060
abling inter-frame propagation. 061
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The lion.

Which is the fastest boat moving in direction to the right?

Tools for determining athletes' performance.
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Which gorilla appears at the end of the video?

Figure 2. Visualization of failure cases for VRS-HQ. These examples illustrate the model’s limitations in scenarios requiring complex
world knowledge and temporal reasoning, as well as challenges in processing negative samples.

D. Failure Case Analysis062

Fig. 2 presents a detailed analysis of several failure cases,063
offering a deeper understanding of the limitations of VRS-064
HQ. The top row highlights two specific challenges. First,065
VRS-HQ struggles with keyframe localization when pre-066
sented with queries based on motion, such as identifying the067
fastest-moving boat within a video sequence. This suggests068
a potential weakness in analyzing and interpreting dynamic069
visual information. Second, the model exhibits difficulty070
segmenting targets with minimal temporal presence, as ex-071
emplified by the gorilla visible only in the last two frames of072
the video. This points to a possible limitation in effectively073
capturing and utilizing short-duration visual cues. The bot-074
tom row reveals further limitations. VRS-HQ demonstrates075
a lack of comprehension when faced with nuanced or im-076
plicitly phrased prompts, such as recognizing a “high bar”077
within the context of gymnastics performance evaluation.078
This suggests a need for improved understanding of com-079
plex semantic relationships within video content. Further-080
more, the model occasionally exhibits hallucinatory behav-081
ior, generating segmentations for non-existent objects, par-082
ticularly when dealing with empty targets or scenes where083
the requested object is absent.084

We hypothesize that several strategies could mitigate085
these limitations. Improving the video comprehension086
capabilities of the Multimodal Large Language Model087

(MLLM) could enhance the ability to interpret complex 088
scenes and queries. Enabling the model to process a larger 089
number of sampled frames simultaneously might improve 090
its sensitivity to subtle temporal changes and short-duration 091
events. Finally, designing specialized tokens specifically for 092
representing empty masks could address the observed hal- 093
lucinations in such scenarios. We leave a thorough investi- 094
gation of these potential improvements to future research. 095

E. VQA Task Results 096

To explore the relationship between dense prediction tasks 097
and multimodal QA, we evaluate VRS-HQ against its foun- 098
dation MLLM Chat-UniVi, on the POPE [5] benchmark, 099
as illustrated in Tab. 3. VRS-HQ performs better on mul- 100
timodal QA despite being designed for reasoning segmen- 101
tation, demonstrating the synergistic relationship between 102
these tasks and the potential for cross-task improvements. 103

Table 3. Results on the POPE benchmark.
POPE-R POPE-P POPE-AMethods Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

Chat-UniVi 85.19 86.05 69.50 74.39 64.97 71.54
VRS-HQ 87.25 87.18 75.40 77.38 70.40 73.97

F. More Qualitative Comparison 104

In addition to the visual comparisons presented in the main 105
document, we provide further comparisons across more di- 106
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verse settings in Fig. 3-5 to demonstrate the model’s reason-107
ing and segmentation capabilities. As illustrated in Fig. 3,108
VISA demonstrates reduced sensitivity to color-related ex-109
pressions (e.g., “white” and “brown”) when provided with110
explicit textual instructions. Furthermore, the example on111
the left demonstrates VISA’s tendency to misidentify visu-112
ally similar objects with complex spatial variations. In con-113
trast, VRS-HQ effectively aggregates temporal information,114
capturing inter-frame motion dynamics and leading to im-115
proved segmentation accuracy.116

Fig. 4 highlights the robust segmentation and reasoning117
capabilities of VRS-HQ in scenarios with complex tempo-118
ral dynamics. In the left example, VISA struggles to pre-119
cisely detect the airplane appearing on the left at the end120
of the video. Similarly, in the right case, VISA misclas-121
sifies the tiger emerging in the lower left corner. In con-122
trast, VRS-HQ leverages the Token-driven Keyframe Se-123
lection for more accurate keyframe identification and inte-124
grates SAM2 with the temporal token, enriched with both125
intra-frame spatial and inter-frame temporal relations, re-126
sulting in reliable decoding and consistent object tracking.127

Fig. 5 presents scenarios requiring general and world128
knowledge for reasoning. In the first example (left), VISA129
segments only two koi carp (Cyprinus carpio) correctly,130
whereas VRS-HQ identifies nearly all the fish present. In131
the second example (right), VISA fails to associate “dog”132
with the phrase “common household pet”, indicating limi-133
tations in its reasoning capabilities. By contrast, VRS-HQ134
leverages the integration of temporal tokens to achieve a135
more nuanced semantic understanding, enabling finer con-136
trol and interpretation.137

G. In-the-wild Visualization Results138

Fig. 6 and Fig. 7 show qualitative results of VRS-HQ on in-139
the-wild videos. Fig. 6 shows results on first-person videos140
from the GTEA dataset [1], using implicit prompts. Even141
in cluttered kitchen environments with many similar ob-142
jects, VRS-HQ demonstrates strong generalization capabil-143
ity. It is particularly effective at segmenting smaller tar-144
gets, such as the spoon and watch shown in the first and145
third rows, respectively, maintaining robust performance in146
these challenging scenarios. Fig. 7 shows results on 360-147
degree panoramic videos from the PanoVOS dataset [10],148
using more intricate prompts. Notably, VRS-HQ success-149
fully segments individuals even when they are split across150
the distorted edges of the video (first row), without any task-151
specific optimizations. Furthermore, it maintains effective152
tracking performance when the primary subjects within the153
video are moving dynamically (last two rows).154
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Which camel(s) are brown?The black-nosed dog with a white neck.

Figure 3. Qualitative comparison of VRS-HQ and VISA in explicit language-based referring scenarios on the ReVOS benchmark.
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The airplane on the left side of the picture at the end of the video. The tiger(s) in the lower left corner of the frame at the end of the video.

Figure 4. Qualitative comparison of VRS-HQ and VISA in scenarios incorporating complex temporal dynamics on the ReVOS benchmark.
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Common household pet(s).Which bony fish(es) belongs/belong to the genus Carassius of the family 
Cyprinidae of the order Cypriniformes?

Figure 5. Qualitative comparison of VRS-HQ and VISA in reasoning scenarios that require world knowledge on the ReVOS benchmark.
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The video’s subject uses a curved tool for scooping and serving liquids or soft solids, which typically features a rounded bowl and a handle, ensuring ease 
of use and practicality.

An item used for timekeeping in daily life and offering aesthetic appeal, commonly worn on the wrist and often featuring a circular or rectangular design, 
occasionally appearing in the video.

A white object with a circular smooth surface, typically placed on a table and unmoved by the videographer, designed to hold and present various types of 
food, offering functionality in dining settings.

Figure 6. Visualization of VRS-HQ utilized in egocentric videos.

A prominent figure subtly highlighted within a commercial promotional video, whose presence and actions serve as the central point for engagement and 
communication.

The individual demonstrating a more seasoned presence and refined mastery of BMX Freestyle maneuvers, embodying the skill and experience often 
associated with years of dedication to the sport.

Who displays the most dynamic and expressive range of movement during the dance, transitioning seamlessly between sharp, high-energy motions, 
captivating attention with their vibrant and energetic performance.

Figure 7. Visualization of VRS-HQ applied to 360-degree panoramic videos.
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