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Figure 9. Disentangling motion and appearance.

In this supplemental material, we provide additional im-
plementation details and experimental results. We present
further comparisons with previous methods [11, 40], as well
as additional results on texture editing, motion editing, and
training on longer sequences. We also include additional
ablation studies on loss terms, guidance masks, and control
points. Finally, we discuss some failure cases and the ethical
implications of our method and datasets. Furthermore, we
provide several videos in the attached videospats.html,
which are critical for visualizing time-dependent appearance
and temporally consistent reconstructions and edits produced
by our method. We strongly encourage readers to open the
videospats.html for the best viewing experience.

A. Additional details on disentangling motion

and appearance.

For the sake of better conceptualization, we provide the ad-
ditional Fig. 9. As shown in Fig. 9 for the foreground
image (rhino), ff

✓s
learns to model motion (a.k.a. spatial de-

formation field), while ff
✓c

learns to model time-dependent
appearance (a.k.a. color deformation field). Note that such
disentanglement of motion and appearance allows us to per-
form editing on the rhino that is not distorted by the time-
dependent appearance (e.g. shadows). In addition, as we
learn a base color and deformation color splines, we can
seamlessly blend appearance changes with color edits, as
shown in the right-hand side of Fig. 9.

B. Additional implementation details

Our VideoSPaTS takes 90 minutes to fit a 512⇥288, 50
frames video. However, the training time could be reduced
with additional engineering efforts, such as replacing MLPs
with optimized embedders like those in tiny-cuda-nn [19].
This can potentially provide between 2⇥ and 10⇥ training
speed-ups. In addition, our method does not require running
the models during inference / editing for every single frame,

since a single run suffices to obtain the deformation and color
control points, providing further speedups during inference
and editing.

We employed periodical positional encoding [35] for our
deformation models.

The weights in Eq.(16) of the main paper are empirically
set to balance their respective terms with respect to lrec.
Specifically:
• �fl = 100 is set with a relatively high value as the coordi-

nate error has very small magnitudes in comparison with
the color errors in lrec.

• �Ds = 0.1 is set to slightly regularize deformations. See
Section D.1 for more details.

• �Dc = 0.001 is set to a relatively low value to regularize
color deformation while still allowing it to learn, as such
color deformation is enabled after 50% of the training.

C. Additional results

We show additional results in this section. Please refer to the
attached videospats.html for additional video visualiza-
tions.

Scene CoDeF Deformable Sprites Ours

Bear 27.52/0.84 30.94/0.96 30.82/0.95

Train 21.53/0.87 27.08/0.94 27.68/0.92

Rhino 24.66/0.81 28.60/0.94 29.35/0.94

Average 24.57/0.84 28.87/0.95 29.23/0.94

Table 1. Video editing quantiative results PSNR/SSIM

C.1. Quantitative results

As mere video reconstruction metrics are not indicative of
editing performance, we show video editing quantitative
results in Table 1 in terms of warping consistency, measured
in avgerage PSNR and SSIM between edited and warped
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Figure 10. Editing results. Note inconsistencies in (b) as deformation fields incorrectly model time-varying appearance in the bear’s fur.

Ground Truth Neural Layered Atlases Deformable Sprites CoDeF Our VideoSPatS

Figure 11. Video reconstruction comparisons with other methods. Our method consistently implicitly reconstructs videos, while the other
methods fail on one case (CoDeF) or multiple cases (Layered Atlases, Deformable Sprites).

edited frames. We use RAFT [34] to obtain the original
frames’ optical flow to warp edited frames at t+n into t. We
set n=3 for a significant difference in terms of scene optical
flow. Ours outperforms CoDeF[21] by a large margin in
terms of PSNR and SSIM, corresponding well to the visuals
in Fig. 10. With respect to Deformable Sprites [40], our
method outperforms it by 0.4dB in terms of PSNR, but more
importantly, our VideoSpatS can model the time-dependent
appearance (e.g. shadows on bear’s fur), yielding a more
realistic and disentangled reconstruction and editing than the
fixed colors in Deformable Sprites [40].

C.2. Canonical spaces and reconstruction

We present additional qualitative results and comparisons
with previous methods, including Neural Layered At-
lases [11], Deformable Sprites [40] and Codef [21], in terms
of video reconstruction and canonical space estimation, as
shown in Fig. 11 and Fig. 12, respectively.

Fig. 11 shows that, unlike Neural Layered Atlases and

Deformable Sprites, our method consistently yields more
detailed reconstructions. Although CoDeF generates very
detailed renderings, its canonical spaces are not suitable
for editing, as shown in Fig. 12. In contrast, our method
generates intuitive canonical spaces that are well-suited for
editing.

C.3. Comparisons to diffusion-based methods.

Although flexible for semantic video editing, diffusion-based
methods such as [18, 22] are not designed for time-dependent
appearance editing or do not support motion editing. Our
method, closer to warping-based video modeling, focuses
on modeling motion, appearance, and occlusions, so we
did not compare to general video editing approaches in the
main paper. For completeness, we provide an additional
comparison to ReVideo [18] in Fig. 14. Ours keeps original
head poses and temporal consistency, and ReVideo changes
semantics.



Layered Atlasses Deformable Sprites CoDeF Our VideoSPatS

Figure 12. Comparisons of the obtained canonical spaces with other methods. For every two rows, the top row corresponds to the
background canonical space, and the bottom row corresponds to the foreground canonical space. Our VideoSPaTS consistently yields more
editing-intuitive and feasible canonical spaces.



Reference CoDeF Editing (Canonic and Render) VideoSPatS Editing (Canonic and Render)

Figure 13. Additional editing results. The consistency of our canonical spaces allows for better deep editing than that of CoDeF.

Original ReVideo Ours

Figure 14. Comparison to ReVideo [18].

C.4. Texture editing

We provide additional editing results in Fig 13. We use
ControlNet [42] to apply editing on the canonical space.
Note that the inconsistencies of canonical spaces in CoDeF
prevent ControlNet from generating a high quality edit, as
shown in the first and last rows of Fig 13. In contrast, our
method generates more edit-friendly canonical spaces that
are translated into higher-quality, temporally-consistent im-
ages.

C.5. Motion editing

By modifying the precomputed control points, we can
smoothly perform motion editing. For instance, we can
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Figure 15. Additional results on motion editing by control points. See our videos for a better visualization.

select every m control point of each foreground pixels and
apply a vertical offset. Thanks to the spline nature of our de-
formation fields, we can smoothly transfer this new motion
into the rendered video. Thanks to our spline deformation
fields, instead of rendering frames where the foreground
is instantly “teleporting” to the offset location, our motion-
edited frames are smoothly rendered without discontinuities.
Additional motion edits, such as amplification and diminish-
ing of motion, are shown in the attached videos as well as in
Fig. 15.

C.6. Experiments on long sequences

While most of the experiments mentioned above were con-
ducted with videos of 50 frames, our method also performs
well on longer sequences. Fig. 16 presents additional re-
sults on sequences of 10 seconds. Our method is capable of
capturing the long-range correspondences in longer videos.

D. Additional ablation studies

D.1. Spatial regularization loss

We show the effects of the Spatial Splines Deformation Reg-
ularization loss, lDs , in Fig. 17. Although the contribution
of the regularization loss is minimal to the canonical space
and final reconstruction, it still helps maintain a better aspect
ratio between the canonical space and the observed space.
This is because it encourages similar deformations between
neighboring pixel locations, preventing the “squeeze” of the
canonical space, as observed in the “without lDs” column of
Fig. 17.

D.2. Color regularization loss

Fig. 18 depicts the effects of the Color Deformation Regular-
ization loss, lDc , showing that not regularizing Pc can lead

to potential entanglement between motion and appearance
in the canonical space, as shown in the bent finger on the
rightmost image.

D.3. Levels of guidance mask

In the main paper, we show that our method can refine the
guidance mask. Fig. 20 provides additional results on dif-
ferent levels of degradation of the guidance mask. In this
supplemental study, our motivation is to show the robustness
of the proposed method when the guidance mask is imper-
fect. As shown in Fig. 20 our proposed model can capture
the foreground motion even with a rough mask. Although
our method cannot recover the mask when it is too heavily
degraded (last row in Fig. 20), it still succeeds with smaller
degradation levels, supporting our design choices in Section
3.3.

D.4. Number of control points

Fig. 21 provides additional ablation studies on the number
of control points. While the best fit can be obtained with the
number of control points equal to the number of frames, our
method can also reasonably reconstruct the scene with fewer
control points.

D.5. Number of iterations

While performance optimization was not the research focus
of this work, we acknowledge the processing time can be
accelerated using faster neural representations (e.g. hash
encodings [20]), optimized learning libraries (e.g. PyTorch
Lightning [6]), and quantization (half-precision). We provide
additional ablation studies on the effects of training iterations
in Fig. 19. As observed, reasonable results can be obtained
with 30K iterations (<30min), with only a 1dB drop w.r.t.
the fully trained model (⇠90min).
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Figure 16. Additional results on long sequences. Our method can capture long-range relationships in long video sequences (10s).

Ground Truth With lDs Without lDs

Figure 17. Effects of lDs . From top to bottom: Composited im-
ages, foreground occluder canonical spaces, and background face
canonical spaces. Our model without lDs yields a slightly squeezed
canonical space, with respect to the observed frames and our model
with lDs .

E. Failure cases

Fig. 22 illustrates examples of failure cases. In the top two
rows, our method fails to reconstruct a feasible canonical
space for the background face. This is because the relative
size of the facial region with respect the amount and com-

Canonical Foreground w/ Dc Canonical Foreground w/o Dc

t = 0 t = 1 t = 0 t = 1

Figure 18. Effects of lDc . t = 0: start, t = 1: end of the video.

10k-8.88min 30k-27.23min 100k-88.6min
30.67dB 36.16dB 37.21dB

Figure 19. Effects of Iteration # on reconstruction PSNR.

plexity of the motion is very small. A work-around for this
issue would be to crop the images around the face region and
run our method again. In the bottom two rows, the amount
of motion is too large for our model to capture. In these
cases, the brush goes from one side to the other and also
rotates showing different faces of it, inducing two brushes on
our estimated canonical space. A potential solution would
consist on modeling the brush with different layers when it
is on one side or the other.

F. Ethical implications

The use of ControlNet in conjunction with our proposed
method to modify the appearance of video content may raise
ethical concerns around authenticity and potential misuse,
such as creating misleading information. To address these
concerns, we advocate for the responsible and transparent
use of this technology, ensuring that any modifications are
clearly indicated and used ethically.

Our collected dataset from publicly available YouTube
videos contains exclusively Creative Commons licensed
videos, with the corresponding URLs provided in the
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Figure 20. Additional ablation studies on guidance mask. Original guidance mask from SAM2[28] is eroded by 5, 11, 21, 31, and 41 pixels.
Even under extreme erosion, our method can still reasonably separate the occluder foreground and the face background.

urls.json file. Authors of these videos are free to contact
us upon publication (due to the anonymous nature of sub-
mission) to have their videos removed from this dataset or
paper results.



Canonical Foreground Canonical Background Foreground Background Composited

Figure 21. Additional ablation studies on number of control points. From top to bottom: 2 (24.195dB), 4 (26.132dB), 8 (28.433dB), 16
(32.209dB), 20 (32.721dB), 30 (34.280dB), 41 (37.010dB), and 82 (36.606dB) control points for a video of 41 frames.



Can. Foreground Can. Background Foreground Background Composited GT

Figure 22. Failure cases. Top two rows: The dynamic region in background image (face region) is too small. Bottom two rows: Too large
foreground motion and self-occlusion (opposite sides of brush) cause a double brush effect in foreground canonical space.
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